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Abstract

Widely used data race detectors, including the state-of-the-
art FastTrack algorithm, incur performance costs that are
acceptable for regular in-house testing, but miss races de-
tectable from the analyzed execution. Predictive analyses de-
tect more data races in an analyzed execution than FastTrack
detects, but at significantly higher performance cost.
This paper presents SmartTrack, an algorithm that opti-

mizes predictive race detection analyses, including two anal-
yses from prior work and a new analysis introduced in this
paper. SmartTrack incorporates two main optimizations: (1)
epoch and ownership optimizations from prior work, applied
to predictive analysis for the first time, and (2) novel con-
flicting critical section optimizations introduced by this paper.
Our evaluation shows that SmartTrack achieves performance
competitive with FastTrackÐa qualitative improvement in
the state of the art for data race detection.

CCS Concepts: · Software and its engineering → Dy-

namic analysis; Software testing and debugging.
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1 Introduction

Data races are common concurrent programming errors that
lead to crashes, hangs, and data corruption [7, 11, 13, 25, 38,
40, 48, 57, 71], incurring significant monetary and human
costs [45, 61, 77, 85]. Data races also cause shared-memory
programs to have weak or undefined semantics [1, 8, 50].
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Data races are hard to detect. They occur nondeterminis-
tically under specific thread interleavings, program inputs,
and execution environments, and can stay hidden even for
extensively tested programs [29, 48, 77, 86]. The prevail-
ing approach for detecting data races is to use dynamic
analysisÐusually happens-before (HB) analysis [42]Ðduring
in-house testing. FastTrack [24] is a state-of-the-art algo-
rithm for HB analysis that is implemented by commercial
detectors [37, 73, 74]. However, HB analysis misses races
that are detectable in the observed execution (Section 2).

To detect more races than HB analysis detects, researchers
have developed dynamic predictive analyses [14, 28, 34, 35,
41, 47, 49, 60, 67, 68, 72, 76]. SMT-based predictive analyses
are powerful but fail to scale beyond bounded windows of
execution (Section 6). In contrast, recently introduced partial-
order-based predictive analyses scale to full program execu-
tions. Notably, weak-causally-precedes (WCP) and doesn’t-
commute (DC) analyses detect more races than HB analy-
sis [41, 67], but they are substantially slower than FastTrack-
optimized HB analysis: 27ś50× vs. 6ś8× according to prior
work [24, 27, 41, 67] and our evaluation (Section 5).

Why are the WCP and DC predictive analyses signifi-
cantly slower than FastTrack-optimized HB analysis? Can
FastTrack’s optimizations be applied to predictive analyses to
achieve significant speedups? In a nutshell, as we show, Fast-
Track’s optimizations can be applied to predictive analyses,
but there still remains a significant performance gap between
predictive and HB analyses. This gap exists because predic-
tive partial orders such as WCP and DC are inherently more
complex than HB. Chiefly, predictive partial orders, in con-
trast with HB, order critical sections on the same lock only if
they contain conflicting accesses,1 which we call conflicting
critical sections (CCSs). In addition, WCP and DC order re-
leases of the same lock if any part of their critical sections are
ordered with each other. These sources of predictive analysis
complexityÐespecially detecting CCSsÐpresent nontrivial
performance challenges with non-obvious solutions.

Contributions. This paper introduces novel contributions
that enable predictive analysis to perform competitively with
optimized HB analysis. Table 1 summarizes our contribu-
tions, in the same order that Sections 3ś4 present them. Our
principal technical contribution is conflicting critical section
(CCS) optimizations (last row of Table 1). These CCS optimiza-
tions introduce novel analysis state and techniques to avoid

1Conflicting accesses are accesses to the same variable by different threads

such that at least one is a write.
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Source of poor performance Contribution Speedup

Releaseśrelease ordering WDC relation and analysis 1.04ś1.25×
Frequent vector clock operations Epoch and ownership optimizations } SmartTrack

2.15ś2.62×
Detecting conflicting critical sections (CCSs) CCS optimizations 1.51ś1.74×

Table 1. Sources of poor performance for existing partial-order-based predictive analyses (WCP and DC [41, 67]), and corresponding

solutions introduced in this paper. Speedups associated with each solution are the geomean across evaluated programs. The second and

third optimizations constitute this paper’s SmartTrack algorithm, with speedups ranging across predictive analyses.WDC is this paper’s

weak-doesn’t-commute, with speedups ranging across multiple optimization levels.

Prior work This work

Non-predictive analysis: HB 6.3× (4.9×) Ð

Predictive analysis

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
WCP 34× (47×) 8.3× (7.5×)
DC 28× (32×) 8.6× (7.6×)
WDC Ð 6.9× (6.2×)

Table 2. Slowdowns and (in parentheses) relative memory usage

over native execution, for state-of-the-art analyses without and

with this paper’s contributions. Lower is better. Each value is the

geomean across the evaluated programs.

computing redundant CCS ordering. A novel but smaller con-
tribution is a new predictive analysis, weak-doesn’t-commute
(WDC) analysis (first row), that elides releaseśrelease order-
ing from DC analysis, a strengthścomplexity tradeoff that
proves worthwhile in practice. In addition, this work applies
FastTrack’s epoch and ownership optimizations (middle row)
to predictive analysis for the first time.
The CCS optimizations and epoch and ownership opti-

mizations together constitute the new SmartTrack algorithm,
which applies to theWCP, DC, andWDC predictive analyses.

This paper’s contributions, evaluated on large, real Java
programs, improve the performance of predictive analyses
substantially, as Table 2 summarizes (based on Section 5’s
results). The Predictive analysis rows show that SmartTrack
optimizations substantially improve the performance of pre-
dictive analyses compared with prior work. The last row
shows that the new WDC analysis is cheaper than prior
predictive analyses. Furthermore, the table shows that the
optimized predictive analyses perform nearly as well as high-
performance HB analysis.
Predictive analysis thus not only finds more races than

HB analysis for an observed execution, but this paper shows
how predictive analysis can close the performance gap with
HB analysis. This result suggests the potential for using
predictive analysis instead of HB analysis as the prevailing
approach for detecting data races.

2 Background and Motivation

This section describes non-predictive and predictive analyses
that detect data races and explains their limitations. Some
notation and terminology follow prior work’s [41, 67].

2.1 Execution Traces and Other Preliminaries

An execution trace tr is a totally ordered list of events, de-
noted by <tr , that represents a linearization of events in a
multithreaded execution.2 Each event consists of a thread
identifier (e.g., T1 or T2) and an operationwith the formwr(x),
rd(x), acq(m), or rel(m), where x is a variable andm is a lock.
(Other synchronization events, such as Java volatile and C++
atomic accesses and thread fork/join, are straightforward
for our analysis implementations to handle; Section 5.1.)
Throughout the paper, we often denote events simply by
their operation (e.g., wr(x) or acq(m)).
An execution trace must be well formed: a thread only

acquires an un-held lock and only releases a lock it holds.
Figure 1(a) shows an example execution trace, in which (as

for all example traces in the paper) top-to-bottom ordering
denotes observed execution order <tr , and column placement
denotes which thread executes each event.
For convenience, we define program-order (PO), a strict

partial order over events in the same thread:

Definition (Program-order). Given a trace tr , ≺PO is the
smallest relation such that, for two events e and e′, e ≺PO e

′

if both e <tr e
′ and e and e′ are executed by the same thread.

Throughout the paper, ordering notation such as e ≺PO e
′ that

omits which trace the ordering applies to, generally refers to
ordering in the observed execution trace tr (not some trace tr′

predicted from trÐa concept explained next).

2.2 Predicted Traces and Predictable Races

A trace tr′ is a predicted trace of tr if tr′ is a feasible execution
derived from the existence of tr . In a predicted trace tr′,
every event is also present in tr (but not every event in tr
is present in tr′ in general); event order preserves tr’s PO
ordering; every read in tr′ has the same last writer (or lack
of a preceding writer) as in tr; and tr′ is well formed (i.e.,
obeys locking rules).3

2Data-race-free programs have sequential consistency (SC) semantics under

the Java and C++ memory models [8, 50]. An execution of a program with a

data race may have non-SC behavior [1, 18], but instrumentation added by

dynamic race detection analysis typically ensures SC for every execution.
3Prior work provides formal definitions of predicted traces [34, 41, 67].
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Thread 1 Thread 2
rd(x)
acq(m)
wr(y)
rel(m)

acq(m)
rd(z)
rel(m)
wr(x)

HB

(a) An execution trace

with a predictable race

Thread 1 Thread 2
acq(m)
rd(z)
rel(m)

rd(x)
wr(x)

(b) A predicted trace of

(a) exposing the race

Figure 1. The execution in (a) has no HB-race (rd(x) ≺HB wr(x)), but
it has a predictable race, as the predicted trace in (b) demonstrates.

The execution in Figure 1(b) is a predicted trace of the
execution in Figure 1(a): its events are a subset of the ob-
served trace’s events, it preserves the original trace’s PO and
last-writer ordering, and it is well formed.
An execution trace tr has a predictable race if some pre-

dicted trace of tr , tr′, contains conflicting events that are
consecutive (no intervening event). Events e and e′ are con-
flicting, denoted e ≍ e′, if they are accesses to the same
variable by different threads, and at least one is a write.

By definition, Figure 1(a) has a predictable race (involving
accesses to x) as demonstrated by Figure 1(b). Intuitively, it
is knowable from the observed execution alone that the con-
flicting accesses rd(x) and wr(x) can execute simultaneously
in another execution.

Note that if we replaced rd(z) with rd(y) in Figure 1(a), the
execution would not have a predictable race. The insight is
that executing rd(y) before wr(y) might see a different value,
which could alter control flow to not execute wr(x).

A race detection analysis is sound if every reported race is
a (true) predictable race.4 Soundness is an important property
because each reported data race, whether true or false, takes
hours or days to investigate [2, 9, 24, 29, 48, 51, 57].

2.3 Happens-Before Analysis

Happens-before (HB) [42] is a strict partial order that orders
events by PO and synchronization order:

Definition (Happens-before). Given a trace tr , ≺HB is the
smallest relation that satisfies the following properties:

● Two events are ordered by HB if they are ordered by PO.
That is, e ≺HB e

′ if e ≺PO e
′.

● Release and acquire events on the same lock are ordered
by HB. That is, r ≺HB a if r and a are release and acquire
events on the same lock and r <tr a.
● HB is transitively closed. That is, e ≺HB e′ if ∃e′′ ⋃︀ e ≺HB
e′′ ∧ e′′ ≺HB e

′.

HB analysis is a dynamic analysis that computes HB over an
executing program and detects HB-races.

4This definition of soundness follows the predictive race detection literature

(e.g., [34, 41, 67, 76]).

An execution trace has an HB-race if it has two conflicting
events unordered by HB. HB analysis is sound: An HB-race
indicates a predictable race [42].
Classical HB analysis uses vector clocks [53] to record

variables’ last-access times. FastTrack and follow-up work
perform optimized, state-of-the-art HB analysis, using a
lightweight representation of read and write metadata [24,
27, 81]. FastTrack’s optimizations result in an average 3×
speedup over vector-clock-based HB analysis (Section 5.4).
FastTrack’s optimized HB analysis is widely used in data
race detectors including Google’s ThreadSanitizer [73, 74]
and Intel Inspector [37].
Optimzed HB analysis achieves performance acceptable

for regular in-house testingÐroughly 6ś8 × slowdown ac-
cording to prior work [24, 27] and our evaluationÐbut it
misses predictable races. Consider Figure 1(a): the observed
execution has no HB-race, despite having a predictable race.

2.4 Predictive Analyses

A predictive analysis is a dynamic analysis that detects pre-
dictable races in an observed trace, including races that are
not HB-races. (This definition distinguishes HB analysis from
predictive analyses.)
Recent work introduces two strict partial orders weaker

than HB, weak-causally-precedes (WCP) and doesn’t-commute
(DC), and corresponding analyses [41, 67]. For simplicity
of exposition, the paper generally shows details only for
DC analysis, which is reasonable because WCP analysis is
inefficient for the same reasons as DC analysis, and our
optimizations to DC analysis apply directly to WCP analysis.

DC is a strict partial order with the following definition:

Definition 1 (Doesn’t-commute). Given a trace tr , ≺DC is
the smallest relation that satisfies the following properties:

(a) If two critical sections on the same lock contain conflict-
ing events, then the first critical section is ordered by
DC to the second event. That is, r1 ≺DC e2 if r1 and r2 are
release events on the same lock, r1 <tr r2, e1 ∈ CS(r1),
e2 ∈ CS(r2), and e1 ≍ e2. (CS(r) returns the set of events
in the critical section ended by release event r , including
r and the corresponding acquire event.)

(b) Release events on the same lock are ordered by DC if
their critical sections contain DC-ordered events. Be-
cause of the next two rules, this rule can be expressed
simply as: r1 ≺DC r2 if r1 and r2 are release events on the
same lock and a1 ≺DC r2 where a1 is the acquire event
that starts the critical section ended by r1.

(c) Two events are ordered by DC if they are ordered by PO.
That is, e ≺DC e

′ if e ≺PO e
′.

(d) DC is transitively closed. That is, e ≺DC e
′ if ∃e′′ ⋃︀ e ≺DC

e′′ ∧ e′′ ≺DC e
′.

WCP differs from DC in one way: it composes with HB
instead of PO, by replacing DC rules (c) and (d) with a rule
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Thread 1 Thread 2 Thread 3
rd(x)
acq(m)
wr(y)
rel(m)

acq(m)
rd(y)
rel(m)
acq(n)
rel(n)

acq(n)
rel(n)
wr(x)

W
CP

D
C

HBW
CP

(a) An execution trace with a pre-

dictable race

Thread 1 Thread 3
acq(n)
rel(n)

rd(x)
wr(x)

(b) A predicted trace of (a)

exposing the race

Figure 2. The execution in (a) has a predictable race and a DC-

race (rd(x)T1 ⇑≺DC wr(x)T3), but no WCP-race (rd(x)T1 ≺WCP wr(x)
T3).

Arrows show cross-thread ordering as labeled.

that WCP left- and right-composes with HB [41]. That is,
e ≺WCP e

′ if ∃e′′ ⋃︀ e ≺HB e
′′ ≺WCP e

′ ∨ e ≺WCP e
′′ ≺HB e

′.
An execution has a WCP-race or DC-race if it has two

conflicting accesses unordered by ≺WCP or ≺DC, respectively.
The execution from Figure 1(a) has a WCP-race and a DC-
race: WCP and DC do not order the critical sections on lock
m because the critical sections do not contain conflicting
accesses, resulting in rd(x) ⇑≺WCP wr(x) and rd(x) ⇑≺DC wr(x).
Figure 2(a), on the other hand, has a DC-race but no WCP-
race (since WCP composes with HB).

WCP analysis and DC analysis compute WCP and DC for
an execution and detect WCP- and DC-races, respectively.
WCP analysis is sound: every WCP-race indicates a pre-
dictable race [41].5 DC, which is strictly weaker than WCP,6

is unsound: it may report a race when no predictable race
(or deadlock) exists. However, DC analysis reports few if any
false races in practice; furthermore, a vindication algorithm
can rule out false races, providing soundness overall [67].

DC analysis details. Algorithm 1 shows the details of an
algorithm for DC analysis based closely on prior work’s
algorithms for WCP and DC analyses [41, 67]. We refer to
this algorithm as unoptimized DC analysis to distinguish it
from optimized algorithms introduced in this paper.

The algorithm computes DC using vector clocks that rep-
resent logical time. A vector clock C ∶ Tid ↦ Val maps each
thread to a nonnegative integer [53]. Operations on vector
clocks are pointwise comparison (⊑) and pointwise join (⊔):

C1 ⊑C2 ⇐⇒ ∀t .C1(t) ≤C2(t)

C1 ⊔C2 ≡ λt .max(C1(t),C2(t))

The algorithm maintains the following analysis state:

5Technically, an execution with a WCP-race has a predictable race or a

predictable deadlock [41].
6WCP in turn is strictly weaker than prior work’s causally-precedes (CP)

relation [49, 65, 76] and thus predicts more races than CP.

Algorithm 1 Unoptimized DC analysis

1: procedure Acqire(t ,m)
2: foreach t ′ ≠ t do Acq

m,t ′
(t).Enque(Ct ) ▷ DC rule (b)

3: procedure Release(t ,m) (relśrel ordering)

4: foreach t ′ ≠ t do
5: while Acq

m,t
(t ′).Front() ⊑ Ct do

6: Acq
m,t
(t ′).Deque()

[︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌊︀
▷ DC rule (b)

7: Ct ← Ct ⊔ Relm,t (t ′).Deque() (relśrel ordering)

8: foreach t ′ ≠ t do Relm,t ′(t).Enque(Ct )
9: foreach x ∈ Rm do Lrm,x ← Lrm,x ⊔Ct
10: foreach x ∈Wm do Lwm,x ← Lwm,x ⊔Ct

[︀⌉︀⌉︀⌈︀⌉︀⌉︀⌊︀
▷ DC rule (a)

11: Rm ←Wm ← ∅ (CCS ordering)

12: Ct (t) ← Ct (t) + 1 ▷ DC rule (c)

13: procedure Write(t ,x ) (PO ordering)

14: foreachm ∈ HeldLocks(t) do
15: Ct ← Ct ⊔ (Lrm,x ⊔ Lwm,x )

[︀⌉︀⌉︀⌈︀⌉︀⌉︀⌊︀
▷ DC rule (a)

16: Wm ←Wm ∪ {x} (CCS ordering)

17: checkWx ⊑ Ct
18: check Rx ⊑ Ct
19: Wx (t) ← Ct (t)
20: procedure Read(t ,x )
21: foreachm ∈ HeldLocks(t) do
22: Ct ← Ct ⊔ Lwm,x

[︀⌉︀⌉︀⌈︀⌉︀⌉︀⌊︀
▷ DC rule (a)

23: Rm ← Rm ∪ {x} (CCS ordering)

24: checkWx ⊑ Ct
25: Rx (t) ← Ct (t)

● a vector clock Ct for each thread t that represents t ’s cur-
rent time;
● vector clocks Rx andWx for each program variable x that
represent times of reads and writes, respectively, to x ;
● vector clocks Lrm,x and Lwm,x that represent the times of
critical sections on lock m containing reads and writes,
respectively, to x ;
● sets Rm andWm of variables read and written, respectively,
by each lockm’s ongoing critical section (if any); and
● queues Acq

m,t
(t ′) and Relm,t (t

′), explained below.

Initially, every set and queue is empty, and every vector clock
maps all threads to 0, except Ct (t) is 1 for every t .

A significant and challenging source of performance costs
is the logic for detecting conflicting critical sections to provide
DC rule (a)Ða cost not present in HB analysis. At each release
of a lockm, the algorithm updates Lrm,x and Lwm,x based on
the variables accessed in the ending critical section on m

(lines 9ś10 in Algorithm 1). At a read or write to x by t ,
the algorithm uses Lrm,x and Lwm,x to join Ct with all prior
critical sections onm that performed conflicting accesses to
x (lines 15 and 22).

The algorithm checks for DC-races by checking for DC
ordering with prior conflicting accesses to x ; a failed check
indicates a DC-race (lines 17, 18, and 24). The algorithm
updates the logical time of the current thread’s last write or
read to x (lines 19 and 25).
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Finally, we explain how unoptimized DC analysis orders
events by DC rule (b) (release events are ordered if criti-
cal sections are ordered); the details are not important for
understanding this paper. The algorithm uses Acq

m,t
(t ′)

and Relm,t (t
′) to detect acquireśrelease ordering between

critical sections and add releaseśrelease ordering. Each vec-
tor clock in the queue Acq

m,t
(t ′) represents the time of

an acq(m) by t ′ that has not been determined to be DC or-
dered to the most recent release of m by t . Vector clocks
in Relm,t (t

′) represent the corresponding rel(m) times for
clocks in Acq

m,t
(t ′). At rel(m) by t , the algorithm checks

whether the release is ordered to a prior acquire ofm by any
thread t ′ (line 5). If so, the algorithm orders the release cor-
responding to the prior acquire to the current rel(m) (line 7).

Running example. To illustrate how unoptimized DC anal-
ysis works and how it compares with optimized algorithms
introduced in this paper, Figure 3(a) shows an example execu-
tion and the corresponding analysis state updates after each
event in the executionÐfocusing on the subset of analysis
state relevant for detecting and ordering conflicting critical
sections (DC rule (a)).

At Thread 1’s rel(m), the algorithm updates Lwm,x to reflect
the fact that xwas written in the critical section onm (line 10
in Algorithm 1). Similarly, the algorithm updates Lrm,x or L

w
p,x

at subsequent lock releases.
At Thread 2’s rd(x), unoptimized DC analysis updatesCT2

to establish orderingwith the prior conflicting critical section
(line 22). Likewise, at Thread 3’swr(x), the algorithm updates
CT3 to establish ordering with both prior conflicting critical
sections (line 15). (Thread 3 is already transitively ordered
with Thread 2’s prior conflicting critical section because of
the sync(o) events.) As a result, the checks at both threads’
accesses to x correctly detect no race (lines 17, 18, and 24).

2.5 Performance Costs of Predictive Analyses

Unoptimized DC (and WCP) analyses [41, 67] incur three
costs over FastTrack-optimized HB analysis [24, 27, 81].

Conflicting critical section (CCS) ordering. Tracking DC
rule (a) requires O(T × L) time (lines 14ś16 and 21ś23 in
Algorithm 1) for each access inside of critical sections on L

locks, where T is the thread count; we find that many of our
evaluated real programs have a high proportion of accesses
executing inside one or more critical sections (Section 5). Fur-
thermore, Lrm,x and Lwm,x store information for lockśvariable
pairs, requiring indirect metadata lookups. Note that Lrm,x

and Lwm,x cannot be represented using epochs, and applying
FastTrack’s epoch optimizations to last-access metadata does
not optimize detecting CCS ordering.

Vector clocks. Unoptimized DC analysis uses full vector
clock operations to update write and read metadata and
check for races (lines 17ś19 and 24ś25).

Release–release ordering. Computing DC rule (b) requires
complex queue operations at every synchronization opera-
tion (lines 2 and 4ś8).7

The next two sections describe our optimizations for these
challenges, starting with releaseśrelease ordering.

3 Weak-Doesn’t-Commute

This section introduces a new weak-doesn’t-commute (WDC)
relation, and aWDC analysis that detectsWDC-races.

WDC is a strict partial order that has the same definition as
DC except that it omits DC rule (b) (Definition 1).8 Removing
lines 2 and 4ś8 from unoptimized DC analysis (Algorithm 1)
yields unoptimizedWDC analysis. This change addresses the
łreleaseśrelease orderingž cost explained in Section 2.5. The
DC-races in Figures 1 and 2 are by definition WDC-races.
The motivation for WDC is that it is simpler than DC

and thus cheaper to compute. WDC is strictly weaker than
DC and thus finds some races that DC does notÐbut they
are generally false races (i.e., not predictable races). Fig-
ure 4 shows an execution with a WDC-race but no DC-
race or predictable race. The execution has no DC-race be-

cause acq(m)T1 ≺DC rel(m)T3 implies rel(m)T1 ≺DC rel(m)T3

by DC rule (b). In contrast, rel(m)T1 ⇑≺WDC rel(m)T3. Thus

rd(x)T1 ⇑≺WDC wr(x)
T3.

To ensure soundness, the prior work’s vindication algo-
rithm for DC analysis [67] can be used without modification
to verify WDC-races as predictable races. Section 4.3 dis-
cusses vindication and its costs. However, like DC analysis,
WDC analysis detects few if any false races in practice. In
our evaluation, despite WDC being weaker than DC, WDC
analysis does not report more races than DC analysis.
The next section’s optimizations apply to WCP, DC, and

WDC analyses alike.

4 SmartTrack

This section introduces SmartTrack, a set of analysis opti-
mizations applicable to predictive analyses:

● Epoch and ownership optimizations are from prior work
that optimizes HB analysis [24, 27, 81]. We apply them to
predictive analysis for the first time (Section 4.1).
● Conflicting critical section (CCS) optimizations are novel
analysis optimizations that represent the paper’s most
significant technical contribution (Section 4.2).

4.1 Epoch and Ownership Optimizations

In 2009, Flanagan and Freund introduced epoch optimizations
to HB analysis, realized in the FastTrack algorithm [24]. The
core idea is that HB analysis only needs to track the latest

7WCP analysis provides the same property at lower cost because it can

maintain per-lock queues for each thread, instead of each pair of threads,

as a consequence of WCP composing with HB [41].
8Weakening WCP in the same way would result in an unsound relation,

giving up a key property of WCP. In contrast, DC is already unsound.
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Execution events Analysis state after event
T1 T2 T3 CT1 CT2 CT3 Wx Rx Lwm,x Lrm,x Lwp,x Lrp,x

<1, 0, 0> <0, 1, 0> <0, 0, 1> <0, 0, 0> <0, 0, 0> <0, 0, 0> <0, 0, 0> <0, 0, 0> <0, 0, 0>
acq(p)
acq(m)
wr(x) <1, 0, 0>
rel(m) <2, 0, 0> <1, 0, 0>

acq(m)
rd(x) <1, 1, 0> <0, 1, 0>

rel(p) <3, 0, 0> <2, 0, 0>
rel(m) <1, 2, 0> <1, 1, 0>
sync(o) <1, 3, 0>

sync(o) <1, 2, 2>
acq(p)
wr(x) <2, 2, 2> <1, 0, 2>
rel(p) <2, 2, 3> <2, 2, 2>

(a) Analysis state for unoptimized DC analysis (Algorithm 1).

Execution events Analysis state after event
T1 T2 T3 CT1 CT2 CT3 Wx Rx Lwm,x Lrm,x Lwp,x Lrp,x

<1, 0, 0> <0, 1, 0> <0, 0, 1> � � <0, 0, 0> <0, 0, 0> <0, 0, 0> <0, 0, 0>
acq(p) <2, 0, 0>
acq(m) <3, 0, 0>
wr(x) 3@T1 3@T1
rel(m) <4, 0, 0> <3, 0, 0> <3, 0, 0>

acq(m) <0, 2, 0>
rd(x) <3, 2, 0> 2@T2

rel(p) <5, 0, 0> <4, 0, 0> <4, 0, 0>
rel(m) <3, 3, 0> <3, 2, 0>
sync(o) <3, 5, 0>

sync(o) <3, 4, 3>
acq(p) <3, 4, 4>
wr(x) <4, 4, 4> 4@T3 4@T3
rel(p) <4, 4, 5> <4, 4, 4> <4, 4, 4>

(b) Analysis state for FTO-based DC analysis (Algorithm 2).

Execution events Analysis state after event
T1 T2 T3 CT1 CT2 CT3 Wx Rx Lwx Lrx

<1, 0, 0> <0, 1, 0> <0, 0, 1> � � ∐︀̃︀ ∐︀̃︀
acq(p) <2, 0, 0>
acq(m) <3, 0, 0>
wr(x) 3@T1 3@T1 ∐︀∐︀<∞, 0, 0>,m̃︀, ∐︀<∞, 0, 0>,p̃︀̃︀ ∐︀∐︀<∞, 0, 0>,m̃︀, ∐︀<∞, 0, 0>,p̃︀̃︀
rel(m) <4, 0, 0> ∐︀∐︀<3, 0, 0>,m̃︀, ∐︀<∞, 0, 0>,p̃︀̃︀ ∐︀∐︀<3, 0, 0>,m̃︀, ∐︀<∞, 0, 0>,p̃︀̃︀

acq(m) <0, 2, 0>
rd(x) <3, 2, 0> <3, 2, 0> <∐︀∐︀<3, 0, 0>,m̃︀, ∐︀<∞, 0, 0>,p̃︀̃︀,

∐︀∐︀<0,∞, 0>,m̃︀̃︀, ∐︀̃︀>
rel(p) <5, 0, 0> ∐︀∐︀<3, 0, 0>,m̃︀, ∐︀<4, 0, 0>,p̃︀̃︀ <∐︀∐︀<3, 0, 0>,m̃︀, ∐︀<4, 0, 0>,p̃︀̃︀,

∐︀∐︀<0,∞, 0>,m̃︀̃︀, ∐︀̃︀>
rel(m) <3, 3, 0> <∐︀∐︀<3, 0, 0>,m̃︀, ∐︀<4, 0, 0>,p̃︀̃︀,

∐︀∐︀<3, 2, 0>,m̃︀̃︀, ∐︀̃︀>
sync(o) <3, 5, 0>

sync(o) <3, 4, 3>
acq(p) <3, 4, 4>
wr(x) <4, 4, 4> 4@T3 4@T3 ∐︀∐︀<0, 0,∞>,p̃︀̃︀ ∐︀∐︀<0, 0,∞>,p̃︀̃︀
rel(p) <4, 4, 5> ∐︀∐︀<4, 4, 4>,p̃︀̃︀ ∐︀∐︀<4, 4, 4>,p̃︀̃︀

(c) Analysis state for SmartTrack-based DC analysis (Algorithm 3).

Figure 3. The operation of three DC analysis algorithms (Algorithms 1ś3) on the same example execution. The entries show the analysis

state (right side) updated after each executed event. The event sync(o) represents the event sequence acq(o); rd(oVar); wr(oVar); rel(o) and

serves to establish DC ordering between two threads. Arrows show cross-thread DC ordering.
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Thread 1 Thread 2 Thread 3
acq(m)
sync(o)
rd(x)
rel(m)

sync(o)
sync(p)

acq(m)
sync(p)
rel(m)
wr(x)

Note: sync(o) represents acq(o); rd(oVar);wr(oVar); rel(o)

W
DC&DC

WDC&DCDC

Figure 4. An execution that has no predictable race and no DC-

race (rd(x)T1 ≺DC wr(x)T3), but does have aWDC-race (rd(x)T1 ⇑≺WDC

wr(x)T3). Arrows show cross-thread ordering.

write to a variable x , and in some cases only needs to track
the latest read to x , to detect the first race. So FastTrack
replaces the use of a vector clock with an epoch, c@t , to
represent the latest write or read, where c is an integer clock
value and t is a thread ID. The lightweight epoch representa-
tion is sufficient for detecting the first race soundly because
whenever an access races with a prior write not represented
by the last-write epoch, then it must also race with the last
write (similarly for reads in some cases). That is, if the cur-
rent access does not race with the last write, then either (1)
the current access does not race with any earlier write or (2)
the last write races with an earlier write (which would have
been detected earlier). A similar argument applies to reads.

It is straightforward to adapt FastTrack’s epoch optimiza-
tions to predictive analysis’s last-access metadata updates:
changes to Rx andWx ’s representations will not affect the
logic for detecting CCSs. We apply epoch optimizations
together with ownership optimizations from Wood et al.’s
FastTrack-Ownership (FTO) algorithm [81]. FTO’s invariants
enable a more elegant formulation for SmartTrack. We ex-
plain FTO shortly, in the context of applying it to DC analysis.

Algorithm 2 shows FTO-DC, which applies FTO’s optimiza-
tions to unoptimized DC analysis (Algorithm 1). Differences
between Algorithms 1 and 2 are highlighted in gray. Opti-
mizing WCP and WDC analyses similarly is straightforward.
As mentioned above briefly, an epoch is a scalar c@t ,

where c is a nonnegative integer, and the leading bits rep-
resent t , a thread ID. For simplicity of exposition, for the
rest of the paper, we redefine vector clocks to map to epochs
instead of integers, C ∶ Tid ↦ Epoch, and redefine C1 ⊑ C2

and C1 ⊔C2 in terms of epochs. The notation e ⪯ C checks
whether an epoch e ≙ c@t is ordered before a vector clockC ,
and evaluates to c ≤ c′ where c′@t ≙C(t). An łuninitializedž
epoch representing no prior access is denoted as �, and � ⪯C
for every vector clock C .
FTO-DC modifies the metadata used by unoptimized DC

analysis (Algorithm 1) in the following ways:

● Wx is an epoch representing the latest write to x .

Algorithm 2 FTO-DC (FTO-based DC analysis)

Differences with unoptimized DC analysis (Algorithm 1) are
highlighted gray.

1: procedure Acqire(t ,m)
2: foreach t ′ ≠ t do Acq

m,t ′
(t).Enque(Ct )

3: Ct (t) ← Ct (t) + 1 ▷ Supports same-epoch checks

4: procedure Release(t ,m)
5: foreach t ′ ≠ t do
6: while Acq

m,t
(t ′).Front() ⊑ Ct do

7: Acq
m,t
(t ′).Deque()

8: Ct ← Ct ⊔ Relm,t (t ′).Deque()
9: foreach t ′ ≠ t do Relm,t ′(t).Enque(Ct )
10: foreach x ∈ Rm do Lrm,x ← Lrm,x ⊔Ct
11: foreach x ∈Wm do Lwm,x ← Lwm,x ⊔Ct
12: Rm ←Wm ← ∅
13: Ct (t) ← Ct (t) + 1
14: procedure Write(t , x )
15: ifWx ≙ Ct (t) then return [Write Same Epoch]
16: foreachm ∈ HeldLocks(t) do
17: Ct ← Ct ⊔ (Lrm,x ⊔ Lwm,x )
18: Wm ←Wm ∪ {x}
19: Rm ← Rm ∪ {x}
20: if Rx ≙ c@t then skip [Write Owned]
21: else if Rx ≙ c@u then [Write Exclusive]
22: check Rx ⪯ Ct
23: else [Write Shared]
24: check Rx ⊑ Ct
25: Wx ← Rx ← Ct (t)
26: procedure Read(t , x )
27: if Rx ≙ Ct (t) then return [Read Same Epoch]
28: if Rx (t) ≙ Ct (t) then return [Shared Same Epoch]
29: foreachm ∈ HeldLocks(t) do
30: Ct ← Ct ⊔ Lwm,x

31: Rm ← Rm ∪ {x}
32: if Rx ≙ c@t then [Read Owned]
33: Rx ← Ct (t)
34: else if Rx ≙ c@u then
35: if Rx ⪯ Ct then [Read Exclusive]
36: Rx ← Ct (t)
37: else [Read Share]
38: checkWx ⪯ Ct
39: Rx ← {c@u,Ct (t)}
40: else if Rx (t) ≙ c@t then [Read Shared Owned]
41: Rx (t) ← Ct (t)
42: else [Read Shared]
43: checkWx ⪯ Ct
44: Rx (t) ← Ct (t)

● Rx is either an epoch or a vector clock representing the
latest reads and write to x .

Initially, every Rx andWx is �.
Additionally, although FTO-DC does not change the rep-

resentations of Lrm,x and Rm from unoptimized DC analysis,
in FTO-DC they represent reads and writes, not just reads,
within a critical section onm.

Compared with unoptimized DC analysis, FTO-DC sig-
nificantly changes the maintenance and checking of Rx and
Wx , by using a set of increasingly complex cases:
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Same-epoch cases. At a write (or read) to x by t , if t has
already written (or read or written) x since the last synchro-
nization event, then the access is effectively redundant (it
cannot introduce a race or change last-accessmetadata). FTO-
DC checks these cases by comparing the current thread’s
epochwithRx orWx , shown in the [Read Same Epoch], [Shared
Same Epoch], and [Write Same Epoch] cases in Algorithm 2.
FTO-DC’s same-epoch check works because a thread in-

crements its logical clockCt (t) at not only release events but
also acquire events (line 3 in Algorithm 2). The same-epoch
check thus succeeds only for accesses redundant since the
last synchronization operation.
If a same-epoch case does not apply, then FTO-DC adds

ordering from prior conflicting critical sections (lines 16ś
19 and 29ś31), just as in unoptimized DC analysis, before
checking other FTO-DC cases. Because Rx , Rm , and Lrm,x

represent last reads and writes, at writes FTO-DC updates
Rx as well asWx (line 25) and Rm as well asWm (line 19).

Owned cases. At a read or write to x by t , if Rx represents
a prior access by t (i.e., Rx ≙ c@t or Rx (t) ≠ �), then the
current access cannot race with any prior accesses. The [Read
Owned], [Read SharedOwned], and [WriteOwned] cases thus
skip race check(s) and proceed to update Rx and/orWx .

Exclusive cases. If an owned case does not apply and Rx is
an epoch, FTO-DC compares the current time with Rx . If the
current access is a write, this comparison acts as a race check
[Write Exclusive]. If the current access is a read, then the
comparison determines whether Rx can remain an epoch or
must become a vector clock. If Rx is DC ordered before the
current access, then Rx remains an epoch [Read Exclusive].
Otherwise, the algorithm checks for a writeśread race by
comparing the current access withWx , and upgrades Rx to
a vector clock representing both the current read and prior
read or write [Read Share].

Shared cases. Finally, if an owned case does not apply and
Rx is a vector clock, a shared case handles the access. Since
Rx may not be DC ordered before the current access, [Read
Shared] checks for a race by comparing with Wx , while
[Write Shared] checks for a race by comparing with Rx
(comparing withWx is unnecessary sinceWx ⪯ Rx ).

Running example. Figure 3(b) shows how FTO-DC works,
using the same execution that we used to show how unopti-
mized DC works (Figure 3(a), described in Section 2.4). Here
we focus on the differences between the two algorithms.

First, unlike unoptimized DC analysis, FTO-DC incre-
ments thread vector clocks at acquire events, leading to larger
vector clock times. Second, FTO-DC uses epochs instead of
vector clocks to represent last-access times when possible,
as illustrated by theWx and Rx columns in Figure 3(b). Third,
FTO-DC essentially treats each write to x as both a write
and read to x. As a result, at the execution’s wr(x) events,
the algorithm updates Rx as well asWx; and at all release

events for a critical section containing a wr(x), the algorithm
updates Lrm,x or L

r
p,x in addition to updating Lwm,x or L

w
p,x.

4.2 Conflicting Critical Section Optimizations

While epoch and ownership optimizations improve the per-
formance of predictive analyses, they cannot optimize de-
tecting conflicting critical sections (CCSs) to compute DC (or
WCP or WDC) rule (a).

Instead, our insight for efficiently detecting CCSs is that,
in common cases, an algorithm can unify how it maintains
CCS metadata and last-access metadata for each variable
x . Our CCS optimizations use new analysis state Lwx and
Lrx , which have a correspondence with Wx and Rx at all
times. Lwx represents critical sections containing the write
represented byWx . L

r
x represents critical sections containing

the read or write represented by Rx if Rx is an epoch, or a
vector of critical sections containing the reads and/or writes
represented by Rx if Rx is a vecor clock. Representing CCSs
in this manner leads to cheaper logic than prior algorithms
for predictive analysis in the common case.
The idea is that if an access within a critical section con-

flicts with a prior access in a critical section on the same lock
not represented by Lwx and Lrx , then it must conflict with the
last access within a critical section, represented by Lwx and
Lrx , or else it races with the last access. Furthermore, CCS op-
timizations exploit the synergy between CCS and last-access
metadata, often avoiding a race check after detecting CCSs.

SmartTrack is our new algorithm that combines CCS opti-
mizations with epoch and ownership optimizations. Algo-
rithm 3 shows SmartTrack-DC, which applies the SmartTrack
algorithm to DC analysis. SmartTrack-DC modifies FTO-DC
(Algorithm 2) by integrating CCS optimizations; differences
between the algorithms are highlighted in gray. (Applying
SmartTrack to WCP or WDC analysis is analogous.) In par-
ticular, removing lines 2 and 8ś12 from Algorithm 3 yields
SmartTrack-WDC.

Analysis state. SmartTrack introduces a new data type: the
critical section (CS) list, which represents the logical times
for releases of active critical sections by thread t at some
point in the execution. A CS list has the following form:

∐︀∐︀C1,m1̃︀, . . . , ∐︀Cn ,mñ︀̃︀

where m1 . . .mn are locks held by t , in innermost to out-
ermost order; and C1 . . .Cn are references to (equivalently,
shallow copies of) vector clocks representing the release
time of each critical section, in innermost to outermost order.
CS lists store references to vector clocks in order to allow the
update of Ci to be deferred until the release ofmi executes.
SmartTrack-DC maintains analysis state similar to Algo-

rithm 2 with the following additions and changes:

● Ht for each thread t , which is a current CS list for t ;
● Lwx for each variable x (replaces FTO-DC’s Lwm,x ), which is
a CS list for the last write access to x ;
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Algorithm 3 SmartTrack-DC (SmartTrack-based DC analysis)

Differences with FTO-based DC analysis (Algorithm 2) are highlighted gray.

1: procedure Acqire(t ,m)
2: foreach t ′ ≠ t do Acq

m,t ′
(t).Enque(Ct (t))

3: let C ≙ reference to new vector clock
4: C(t) ← ∞
5: Ht ← prepend(∐︀C,m̃︀,Ht ) ▷ Add ∐︀C,m̃︀ as head of list
6: Ct (t) ← Ct (t) + 1
7: procedure Release(t ,m)
8: foreach t ′ ≠ t do
9: while Acq

m,t
(t ′).Front() ⪯ Ct do

10: Acq
m,t
(t ′).Deque()

11: Ct ← Ct ⊔ Relm,t (t ′).Deque()
12: foreach t ′ ≠ t do Relm,t ′(t).Enque(Ct )
13: let ∐︀C, _̃︀ ≙ head(Ht ) ▷ head() returns first element
14: C ← Ct ▷ Update vector clock referenced by C
15: Ht ← rest(Ht ) ▷ rest() returns list without first element
16: Ct (t) ← Ct (t) + 1
17: procedureWrite(t , x )
18: ifWx ≙ Ct (t) then return [Write Same Epoch]

19: if Arx ≠ ∅ then
20: foreachm ∈ HeldLocks(t) do
21: Ct ← Ct ⊔ (⊔u≠t Arx (u)(m))
22: foreach u ≠ t do Arx (u)(m) ← Awx (u)(m) ← ∅
23: Arx (t) ← Awx (t) ← ∅
24: if Rx ≙ c@t then skip [Write Owned]
25: else if Rx ≙ c@u then [Write Exclusive]
26: let A ≙MultiCheck(Lrx ,u,Rx )
27: if A ≠ ∅ then
28: Arx (u) ← A
29: Awx (u) ←MultiCheck(Lwx ,u,�)
30: else [Write Shared]
31: foreach u ≠ t do
32: let A ≙MultiCheck(Lrx (u),u,Rx (u))
33: if A ≠ ∅ then
34: Arx (u) ← A
35: Awx (u) ←MultiCheck(Lwx (u),u,�)
36: Lwx ← Lrx ← Ht

37: Wx ← Rx ← Ct (t)

38: procedure Read(t , x )
39: if Rx ≙ Ct (t) then return [Read Same Epoch]
40: if Rx (t) ≙ Ct (t) then return [Shared Same Epoch]

41: if Awx ≠ ∅ then
42: foreachm ∈ HeldLocks(t) do
43: Ct ← Ct ⊔ (⊔u≠t Awx (u)(m))
44: if Rx ≙ c@t then [Read Owned]
45: Lrx ← Ht

46: Rx ← Ct (t)
47: else if Rx ≙ c@u then

48: let c′@u ≙ {C′(u) s.t. ∐︀C′, _̃︀ ≙ tail(Lrx ) if Lrx ≠ ∐︀̃︀
Rx otherwise

49: if c′@u ⪯ Ct then [Read Exclusive]
50: Lrx ← Ht

51: Rx ← Ct (t)
52: else [Read Share]
53: MultiCheck(Lwx , tid(Wx ),Wx )
54: Lrx ← {Lrx ,Ht}
55: Rx ← {c@u,Ct (t)}
56: else if Rx (t) ≙ c@t then [Read Shared Owned]

57: Lrx (t) ← Ht

58: Rx (t) ← Ct (t)
59: else [Read Shared]
60: MultiCheck(Lwx , tid(Wx ),Wx )
61: Lrx (t) ← Ht

62: Rx (t) ← Ct (t)
63: procedure MultiCheck(L, u, a)
64: let A ≙ ∅ ▷ Empty map
65: foreach ∐︀C,m̃︀ in L in tail-to-head order do
66: if C(u) ⪯ Ct then return A
67: if m ∈ heldby(t) then
68: Ct ← Ct ⊔C
69: return A
70: A(m) ← C

71: check a ⪯ Ct
72: return A

● Lrx (replaces FTO-DC’s Lrm,x ) has a form dependent on Rx :
ś if Rx is an epoch, Lrx is a CS list for the last access to x ;
ś if Rx is a vector clock, Lrx is a thread-indexed vector of
CS lists (Tid ↦ CS list), with Lrx (t) representing the CS
list for the last access to x by t ;

● Aw
x andAr

x (łancillaryžmetadata) for each variablex , which
are vectors of maps from locks to references to vector clocks
(Tid ↦ Lock ↦ VC). Aw

x and Ar
x represent critical sections

containing accesses to x that are not necessarily captured
by Lwx and Lrx , respectively.

In addition to the above changes to integrate CCS optimiza-
tions, SmartTrack-DC makes the following change to FTO-
DC as a small optimization:

● Acq
m,t
(t ′) is now a queue of epochs.

Initially all CS lists are empty; Aw
x and Ar

x are empty maps.

Maintaining CS lists. SmartTrack-DC uses the same anal-
ysis cases as FTO-DC. At each read or write to x , SmartTrack-
DC maintains CCS metadata in Lwx and Lrx that corresponds
to last-access metadata inWx and Rx . At an access, the algo-
rithm updates Lrx and/or Lwx to represent the current thread’s
active critical sections.
SmartTrack-DC obtains the CS list representing the cur-

rent thread’s active critical sections from Ht , which the al-
gorithm maintains at each acquire and release event. At an
acquire, the algorithm prepends a new entry ∐︀C,m̃︀ to Ht

representing the new innermost critical section (lines 3ś5).
C is a reference to (i.e., shallow copy of) a newly allocated
vector clock that represents the critical section’s release time,
which is not yet known and will be updated at the release.
In the meantime, another thread u may query whether t ’s
release ofm is DC ordered beforeu’s current time (line 66; ex-
plained later). To ensure that this query returns false before
t ’s release ofm, the algorithm initializes C(t) to∞ (line 4).
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Thread 1 Thread 2 Thread 3
acq(m)
rd(x)
sync(o)

sync(o)
rd(x)
sync(p)

rel(m)
sync(p)
acq(m)
wr(x)
rel(m)

(a) An execution motivating the need for [Read

Share] when FTO-DC takes [Read Exclusive]

Thread 1 Thread 2 Thread 3
acq(m)
wr(x)
sync(o)

sync(o)
wr(x)
sync(p)

rel(m)
sync(p)
acq(m)
rd(x)
rel(m)

(b) An execution motivating the need for łancil-

laryž metadata Awx and Arx

Thread 1 Thread 2 Thread 3
acq(m)
rd(x)
sync(o)

sync(o)
wr(x)
sync(p)

rel(m)
sync(p)
acq(m)
wr(x)
rel(m)

(c) Another execution motivating the need for

A
w
x and Arx

Figure 5. Example executions used by the text to illustrate how SmartTrack-DC computes DC accurately. All arrows show DC ordering.

Dashed arrows represent ordering that would be missed without specific SmartTrack features. sync(o) represents the sequence acq(o);

rd(oVar); wr(oVar); rel(o).

When the release ofm happens, the algorithm removes the
first element ∐︀C,m̃︀ of Ht , representing the critical section
onm, and updates the vector clock referenced byC with the
release time (lines 13ś15).

Checking for CCSs and races. At a read or write that may
conflict with prior access(es), SmartTrack-DC combines the
CCS check with the race check. To perform this combined
check, the algorithm calls the helper function MultiCheck.
MultiCheck traverses a CS list in reverse (outermost-to-
innermost) order, looking for a prior critical section that is
ordered to the current access or that conflicts with one of the
current access’s held locks (lines 65ś70). If a critical section
matches, it subsumes checking for inner critical sections or
a DC-race, so MultiCheck returns. If no critical section
matches, MultiCheck performs the race check (line 71).

Running example. Figure 3(c) shows how SmartTrack-DC
works, focusing on differences with FTO-DC.

Unique to SmartTrack-DC are Lwx and Lrx . At each access
to x by a thread t , the algorithm updates Lrx and/or L

w
x using

the current value of Ht , the CS list representing t ’s ongoing
critical sections (line 68 in Algorithm 3). Note that Ht and
thus Lrx and/or L

w
x contain references to (i.e., shallow copies

of) vector clocks. At each release of a lock, the algorithm
updates vector clocks referenced by Lrx and/or L

w
x .

SmartTrack-DC uses Lwx and Lrx to detect and order con-
flicting critical sections and to detect races. At Thread 2’s
rd(x), the algorithm takes the [Read Share] case after de-
tecting that Thread 1’s critical section on p is not fully DC
ordered before the current time (lines 48ś49). (Below we
explain why SmartTrack-DC must take the [Read Share] in
this situation.) The [Read Share] case inflates both Rx and L

r
x

to vectors; Lrx represents Thread 1 and 2’s prior accesses to x

within critical sections.
At Thread 3’s wr(x), SmartTrack-DC takes the [Write

Shared] case, which first checks ordering with Thread 1’s

wr(x); it detects the conflicting critical sections on p, so it
adds ordering from rel(p) to the current access (line 68). The
algorithm then checks ordering with Thread 2’s rd(x); the
check succeeds immediately (line 66) because the events are
already DC ordered due to the sync(o) events.

SmartTrack’s [Read Share] behavior. SmartTrack’s CCS
optimizations unify the representations of critical section
and last-access metadata. To handle this unification cor-
rectly, SmartTrack-DC takes the [Read Share] case in some
situationsÐsuch as Thread 2’s rd(x) in Figure 3Ðwhen FTO-
DC would take [Read Exclusive].
Figure 5(a) shows an execution that motivates the need

for this behavior. If SmartTrack-DC were to take the [Read

Exclusive] case at Thread 2’s rd(x), then the algorithm would
lose information about Thread 1’s rd(x) being inside of the
critical section on m. As a result, SmartTrack-DC would
miss adding ordering from Thread 1’s rel(m) to Thread 3’s
wr(x) (dashed arrow), leading to unsound tracking of DC and
potentially reporting a false race later. SmartTrack-DC thus
takes [Read Share] in situations like Thread 2’s rd(x) when
the prior access’s critical sections (represented by the CS list
Lrx ) are not all ordered before the current access.

Using “ancillary” metadata. Partly as a result of its [Read
Share] behavior, SmartTrack-DC loses no needed CCS infor-
mation at reads. However, as described so far, SmartTrack-DC
can lose needed CCS information at writes to x , by overwrit-
ing information about critical sections in Lrx and Lwx that are
not ordered before the current write. Figures 5(b) and 5(c)
show two executions in which this situation occurs. In each
execution, at Thread 2’s wr(x), SmartTrack-DC updates Lrx
and Lwx to ∐︀̃︀ (representing the access’s lack of active critical
sections)Ðwhich loses information about Thread 1’s critical
section onm containing an access to x . As a result, in each
execution, when Thread 3 accesses x , SmartTrack-DC cannot
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use Lrx or Lwx to detect the ordering from Thread 1’s rel(m)

to the current access.
To ensure sound tracking of DC, SmartTrack-DC uses

the ancillary metadata Ar
x and Aw

x to track CCS information
lost from Lrx and Lwx at writes to x . Ar

x (t)(m) and A
w
x (t)(m)

each represent the release time of a critical section onm by
t containing a read or write (Ar

x ) or write (A
w
x ) to x . Mul-

tiCheck computes a łresidualž map A of critical sections
that are not ordered to the current access (line 70), which
SmartTrack-DC assigns to Ar

x or Aw
x . At a write or read not

handled by a same-epoch case, if Ar
x or Aw

x , respectively, is
non-empty, the analysis adds ordering for CCSs represented
in Ar

x (lines 19ś23) or Aw
x (lines 41ś43), respectively.

In essence, SmartTrack-DC uses per-variable CCS meta-
data (Lrx and Lwx ) that mimics last-access metadata (Rx and
Wx ) when feasible, and otherwise falls back to CCS metadata
(Ar

x and Aw
x ) analogous to non-SmartTrack metadata (i.e.,

Lrm,x and Lwm,x in Algorithms 1 and 2). SmartTrack’s perfor-
mance improvement over FTO relies on Ar

x and Aw
x being

empty in most cases.

Optimizing Acq
m,t
(t ′). A final optimization that we in-

clude as part of SmartTrack-DC is to changeAcq
m,t
(t ′) from

a vector clock (used in FTO-DC) to an epoch. This optimiza-
tion is correct because an epoch is sufficient for checking
if ordering has been established from an acq(m) on t ′ to
a rel(m) on t , since SmartTrack-DC increments Ct (t) after
every acquire operation.

4.3 Vindication: Performance Cost of Soundness

A final significant cost of DC analysis is supporting a vindica-
tion algorithm that checks whether a DC-race is a predictable
race (similarly for WDC analysis and WDC-races). Vindica-
tion operates on a constraint graph G, constructed during
DC analysis, which adds significant time and space overhead.
To avoid the cost of constructing a constraint graph, an

implementation of DC analysis can either (1) report all DC-
races, which are almost never false races in practice, or (2)
replay any execution that detects a new (i.e., previously un-
known) DC-raceÐand construct a constraint graph and per-
form vindication during the replayed execution only. Recent
multithreaded record & replay approaches add very low (3%)
run-time overhead to record an execution [46, 52].9 Replay
failures caused by undetected HB-races [44] are a non-issue
since DC analysis detects all HB-races.

Our optimized DC and WDC analyses do not construct a
constraint graph and thus do not perform vindication.

9We have not implemented or tested an approach using record & replay,

which is beyond the scope of this paper. The recent practical multithreaded

record & replay tools iReplayer [46] and Castor [52] both target C/C++

programs, while our implementation targets Java programs.

5 Evaluation

This section evaluates the effectiveness of this paper’s pre-
dictive analysis optimizations.

5.1 Implementation

Table 3 presents the analyses that we have implemented and
evaluated, categorized by analysis type (row headings) and
optimization level (column headings). Each cell in the table
(e.g., FTO-WDC) is an analysis that represents the application
of an algorithm (FTO) to an analysis type (WDC analysis).

We have made all of these analysis implementations open
source and publicly available.10

We implemented the optimized analyses (+ Ownership
and + CS optimizations columns in Table 3) based on the
default FastTrack2 analysis [27] in RoadRunner, a dynamic
analysis framework for concurrent Java programs [26].11

Our optimized analysis implementations minimally extend
the existing FastTrack analysis that is part of the publicly
available RoadRunner implementation.
For the unoptimized analyses (Unopt column), we used

our RoadRunner-based Vindicator implementation12 which
implements vector-clock-based HB, WCP, and DC analyses
and the vindication algorithm for checking DC-races [67].
We extended Unopt-DC to implement Unopt-WDC.

All analyses are online and detect races synchronously;
none of them build a constraint graph or perform vindication.

Handling events. In addition to handling read, write, ac-
quire, and release events as described so far, every analysis
supports additional synchronization primitives. Each analy-
sis establishes order on thread fork and join; between con-
flicting volatile variable accesses; and from łclass initializedž
to łclass accessedž events. Each analysis treats wait() as a
release followed by an acquire.

Every analysis maintains last-access metadata at the gran-
ularity of Java memory accesses, i.e., each object field, static
field, and array element has its own last-access metadata.

Same-epoch cases. The Unopt-∗ analysis implementations
perform a [Shared Same Epoch]-like check at reads and writes
(not shown in Algorithm 1). Thus, the unoptimized predic-
tive analysis implementations (Unopt-{WCP, DC, WDC})
increment Ct (t) at acquires as well as releases, just as for
the optimized predictive analyses.

Handling races. In theory, the analyses handle executions
up to the first race. In practice, similar to industry-standard
race detectors [37, 73, 74], our analysis implementations
continue analyzing executions after the first race in order to
report more races to users and collect performance results
for full executions. At a race, an analysis reports the race
with the static program location that detected the race. If

10https://github.com/PLaSSticity/SmartTrack-pldi20
11https://github.com/stephenfreund/RoadRunner/releases/tag/v0.5
12https://github.com/PLaSSticity/Vindicator
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Unopt Epochs + Ownership + CS optimizations

HB Unopt-HB FastTrack2 [27] FTO-HB [81] N/A

WCP Unopt-WCP [41] Ð FTO-WCP SmartTrack-WCP

DC Unopt-DC (Algorithm 1) Ð FTO-DC (Algorithm 2) SmartTrack-DC (Algorithm 3)

WDC Unopt-WDC Ð FTO-WDC SmartTrack-WDC

Table 3. Implemented and evaluated analyses. Optimizations increase from left to right, and relations weaken from top to bottom.

an analysis detects multiple races at an access (e.g., a write
races with multiple last readers), we still count it as a single
race. After the analysis detects a race, it continues normally.

Analysis metadata. Each analysis processes events cor-
rectly in parallel by using fine-grained synchronization on
analysis metadata. An analysis can forgo synchronization for
an access if a same-epoch check succeeds. To synchronize
this lock-free check correctly (i.e., fence semantics), the read
and write epochs in all analyses are volatile variables.

5.2 Methodology

Our evaluation uses the DaCapo benchmarks, version 9.12-
bach, which are real, widely used concurrent programs that
have been harnessed for evaluating performance [5]. While
the DaCapo suite is not expressly intended for evaluating
data race detection, the programs do contain data races.

RoadRunner bundles a version of the DaCapo benchmarks,
modified to work with RoadRunner, that executes workloads
similar to the default workloads. RoadRunner does not cur-
rently support eclipse, tradebeans, or tradesoap, and fop is
single threaded, so our evaluation excludes those programs.

The experiments run on a quiet system with an Intel Xeon
E5-2683 14-core processor with hyperthreading disabled and
256 GB of main memory running Linux 3.10.0. We run the
implementationswith theHotSpot 1.8.0 JVM and let it choose
and adjust the heap size on the fly.

Each reported performance result, race count, or frequency
statistic for an evaluated program is the arithmetic mean
of 10 trials. We measure execution time as wall-clock time
within the benchmarked harness of the evaluated program,
and memory usage as the maximum resident set size during
execution according to the GNU time program. We measure
time, memory, and races within the same runs, and frequency
statistics in separate statistics-collecting runs.

Our extended arXiv paper provides detailed performance
results, predictable race coverage results, vindication results,
95% confidence intervals for all results, and frequency statis-
tics for SmartTrack algorithm cases [66].

5.3 Run-Time Characteristics

Table 4 shows run-time characteristics relevant to the anal-
yses. The #Thr column shows the total number of threads
created. Events are the total executed program events (All)
and non-same-epoch accesses (NSEAs).

The Locks held at NSEAs columns report percentages of
non-same-epoch accesses holding at least one, two, or three
locks, respectively. These counts are important because non-
SmartTrack predictive analyses perform substantial work per
held lock at non-same-epoch accesses. While all programs
generally benefit from epoch and ownership optimizations,
only programs that perform many accesses holding one or
more locks benefit substantially from CCS optimizations. No-
tably, h2, luindex, and xalan have the highest average locks
held per access. Unsurprisingly, these programs have the
highest FTO-based predictive analysis overhead and benefit
the most from SmartTrack’s optimizations (Section 5.5).
The łAncillaryž metadata columns report percentages of

non-same-epoch accesses that detect non-null ancillarymeta-
data at a Check (lines 19 and 41 in Algorithm 3) and that Use
ancillary metadata to add critical section ordering (lines 21
and 43 in Algorithm 3). Ancillary metadata is rarely if ever
used, but some programs perform a significant number of
checks, which can degrade performance.

5.4 Comparing Baselines

The rightmost columns of Table 4 show results that help
determine whether we are using valid baselines compared
with prior work. Run time reports slowdowns relative to
uninstrumented (unanalyzed) execution, and Memory usage
reports memory used relative to uninstrumented execution.

FastTrack comparison. The Run time and Memory usage
columns report the performance of two variants of the Fast-
Track algorithm. FT2 is our implementation of the FastTrack2
algorithm [27], based closely on RoadRunner’s implemen-
tation of FastTrack2, which is the default FastTrack tool in
RoadRunner. The main difference between FT2 and Road-
Runner’s FastTrack2 lies in how they handle detected races.
RoadRunner’s FastTrack2 does not update last-access meta-
data at read (but not write) events that detect a race (for
unknown reasons); it does not perform analysis on future
accesses to a variable after it detects a race on the variable;
and it limits the number of races it counts by class field and
array type. In contrast, our FT2 updates last-access metadata
after every event even if it detects a race; it does not stop
performing analysis on any events; and it counts every race.
FTO is our implementation of FTO-HB analysis, imple-

mented in the same RoadRunner tool as FT2. Overall FTO-
HB performs quite similarly to FT2. The rest of the paper’s
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Size Events Locks held at NSEAs łAncillaryž metadata Run time Memory usage

Program #Thr (LoC) All NSEAs ≥ 1 ≥ 2 ≥ 3 Check Use FT2 FTO-HB FT2 FTO-HB

avrora 7 69 K 1,400M 140M 5.9% <0.1% 0 6.8% 0 5.3× 5.4× 13× 13×
batik 7 188 K 160M 5.8M 46.1% <0.1% <0.1% 0 0 4.2× 4.2× 4.9× 4.9×
h2 16 116 K 3,800M 300M 82.8% 80.1% 0.17% 0.46% <0.001% 9.5× 9.3× 3.0× 3.0×
jython 2 212 K 730M 170M 3.8% 0.23% <0.1% 0 0 8.3× 8.3× 7.0× 7.0×
luindex 3 126 K 400M 41M 25.8% 25.4% 25.3% 0 0 7.9× 8.0× 4.3× 4.3×
lusearch 16 126 K 1,400M 140M 3.8% 0.39% <0.1% <0.001% 0 11× 12× 9.7× 10×
pmd 15 61 K 210M 8.0M 1.1% 0 0 0 0 6.5× 6.6× 2.9× 2.7×
sunflow 29 22 K 9,700M 3.5M 0.78% <0.1% 0 0 0 17× 17× 8.4× 8.4×
tomcat 55 159 K 44M 9.7M 13.1% 8.0% 3.9% 0.13% <0.001% 20× 19× 55× 61×
xalan 15 176 K 630M 240M 99.9% 99.7% 1.1% 6.5% 0 4.1× 4.4× 6.3× 6.3×

Table 4. Run-time characteristics of the evaluated programs. NSEAs are non-same-epoch accesses. The last two major columns report run

time and memory usage for FastTrack-based HB analyses, relative to uninstrumented execution.

Unopt- FTO- SmartTrack-

HB 19× 6.3× N/A

WCP 34× 13× 8.3×
DC 28× 13× 8.6×
WDC 27× 12× 6.9×

Run time

Unopt- FTO- SmartTrack-

25× 4.9× N/A

47× 13× 7.5×
32× 12× 7.6×
31× 11× 6.2×

Memory usage

Table 5. Geometric mean of run time and memory usage across

the evaluated programs.

results compare against FTO-HB as the representative from
the FastTrack family of optimized HB analyses.

5.5 Run-Time and Memory Performance

This section evaluates the performance of our optimized
analyses, compared with competing approaches from prior
work. Table 5 presents the paper’s main results: run time
and memory usage of the 11 analyses from Table 3.
The table reports relative run time and memory usage

across all programs. For example, a cell in column SmartTrack-
and rowDC shows slowdown ormemory usage of SmartTrack-
DC analysis relative to uninstrumented execution.

The main takeaway is that SmartTrack’s optimizations are
effective at improving the performance of all three predictive
analyses substantially, achieving performance (notably run-
time overhead) close to state-of-the-art HB analysis (FTO-
HB). On average across the programs, the FTO optimizations
applied to predictive analyses result in a 2.2ś2.6× speedup
and 2.7ś3.6 × memory usage reduction over unoptimized
analyses (Unopt-∗), although the FTO-based predictive anal-
yses are still about twice as slow as FTO-HB on average.
SmartTrack’s CCS optimizations provide a 1.5ś1.7 × aver-
age speedup and 1.6ś1.8 × memory usage reduction over
FTO-∗ analyses, showing that CCS optimizations eliminate
most of the remaining costs FTO-based predictive analyses
incur compared with FTO-HB. Overall, SmartTrack opti-
mizations yield 3.3ś4.1 × average speedups and 4.2ś6.3 ×
memory usage reductions over unoptimized analyses, clos-
ing the performance gap compared with FTO-HB. Both FTO

and CCS optimizations contribute proportionate improve-
ments to achieve predictive analysis with performance close
to that of state-of-the-art HB analysis.
HB analysis generally outperforms predictive analyses

at each optimization level because it is the most straight-
forward analysis, eschewing the cost of computing CCSs.
Unopt-WCP performs worse than Unopt-DC due to the ad-
ditional cost of computing HB (needed to compute WCP).
FTO-WCP and SmartTrack-WCP reduce this analysis cost
significantly. At the same time, DC rule (b) is somewhat
more complex to compute than WCP rule (b) (Section 2.4).
These two effects cancel out on average, leading to little or
no average performance difference between FTO-WCP and
FTO-DC and between SmartTrack-WCP and SmartTrack-DC.
WDC analysis eliminates computing rule (b), achieving bet-
ter performance than DC analysis at all optimization levels.

SmartTrack thus enables three kinds of predictive analysis,
each offering a different coverageśsoundness tradeoff, with
performance approaching that of HB analysis.

5.6 Predictable Race Coverage

Although our evaluation focuses on the performance of our
optimizations, and prior work has established that WCP and
DC analyses detect more races than HB analysis [41, 67], we
have also evaluated how many races each analysis detects.
In general, the results confirm that weaker relations find

more races than stronger relations (except WDC analysis
does not report more races than DC analysis). In addition,
for each relation, the different optimizations (Unopt-, FTO-,
and SmartTrack-) generally report comparable race counts.
The differences that exist across optimizations are attribut-
able to run-to-run variation (as reported confidence intervals
show) and differences in how the optimized analyses detect
races after the first race (Section 5.1). Thus the race count
differences do not serve to compare race detection effec-
tiveness across optimizations, but rather to verify that the
proposed optimizations and our implementations of them
lead to reasonable race detection results.
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In experimentswith configurations of Unopt-DC andUnopt-
WDC that build constraint graphs and perform vindication,
every detected DC- and WDC-race was successfully vindi-
cated (results not shown). We cross-referenced the static
races detected by unoptimized and SmartTrack-based anal-
yses in order to confirm that every race reported by the
SmartTrack-based analyses was a true race.

5.7 Results Summary

As the results show, prior work’s WCP and DC analyses
are costly, especially when accesses in critical sections are
frequent. The SmartTrack-optimized WCP and DC analyses
improve run time and memory usage by several times on
average, achieving performance comparable to HB analysis.

SmartTrack’s optimizations are effective across predictive
analyses. SoundWCP analysis detects fewer races than other
predictive analyses and, in its unoptimized form, has the
highest overhead. SmartTrack-WCP provides performance
on par with HB analysis and other predictive analyses. At
the other end of the coverageśsoundness tradeoff, WDC has
the most potential for false positivesÐalthough in practice
it detects only true racesÐand it has the lowest overhead
among predictive analyses. SmartTrack-WDC provides the
best performance of any predictive analysis, nearly matching
the performance of optimized HB analysis (FTO-HB). The
coverageśsoundness tradeoff provides flexibility to choose
different analyses depending on a programmer’s tolerance
for the possibility of false races (although deploying with
record & replay allows vindicating reported DC- or WDC-
races) and the empirically observed differences among the
analyses for the programmer’s application.
Overall, the results show that predictive analyses can be

practical data race detectors that are competitive with stan-
dard highly optimized HB data race detectors.

6 Related Work

This section considers prior work other than happens-before
(HB) and partial-order-based predictive analyses discussed
in Section 2 [20, 24, 27, 37, 41, 49, 60, 63, 65, 67, 73, 74, 76, 81].

Our recent work introduces two partial-order-based analy-
ses, strong-dependently-precedes (SDP) andweak-dependently-
precedes (WDP) analyses, that have more precise notions of
dependence than WCP and DC analyses, respectively [28].
SDP andWDP do not generally order writeśwrite conflicting
critical sections, making it challenging to apply epoch and
CCS optimizations to these analyses.

An alternative to partial-order-based predictive analysis is
SMT-based approaches, which encode reordering constraints
as SMT constraints [14, 34, 35, 47, 68, 72]. However, the num-
ber of constraints and the solving time scale superlinearly
with trace length, so prior work analyzes bounded windows
of execution, typically missing races that are more than a few

thousand events apart. Prior work shows that a predictable
race’s accesses may be millions of events apart [28, 67].
An alternative to HB analysis is lockset analysis, which

detects races that violate a locking discipline, but inherently
reports false races [15, 17, 58, 59, 69, 79]. Hybrid locksetśHB
lockset analyses typically incur the disadvantages of at least
one kind of analysis [59, 63, 83].

A sound, non-predictive alternative to HB analysis is anal-
yses that detect or infer simultaneous conflicting regions or
accesses [3, 4, 19, 22, 71, 78].
Dynamic race detection analyses can target production

runs by trading race coverage for performance [3, 9, 22, 39,
51, 75, 84] or using custom hardware [16, 62, 70, 82, 86].

Static analysis can detect all data races in all possible exe-
cutions of a program [21, 55, 56, 64, 80], but for real programs,
it reports thousands of false races [3, 43].
RacerD and RacerDX are recent static race detectors that

find few false races in practice [6, 30]. RacerDX provably
reports no false races under a set of well-defined assump-
tions [30]. However, these assumptions are not realistic; for
example, RacerDX reports false races for well-synchronized
programs that violate a locking discipline [31]. The RacerDX
evaluation uses a few of the same programs as our evalua-
tion, but the results are incomparable because the papers use
different methodology for counting distinct races.

Schedule exploration approaches execute programs multi-
ple times using either systematic exploration (often called
model checking) or using heuristics [10, 12, 23, 32, 33, 36, 54,
71]. Schedule exploration is complementary with predictive
analysis, which seeks to find more races in a given schedule.

7 Conclusion

This paper’s contributionsÐnotably SmartTrack’s novel con-
flicting critical section (CCS) optimizationsÐenable predic-
tive race detectors to perform nearly as well as state-of-the-
art non-predictive race detectors. SmartTrack’s optimiza-
tions are applicable to existing predictive analyses and to this
paper’s newWDC analysis, offering compelling new options
in the performanceśdetection space. This work substantially
improves the performance of predictive race detection analy-
ses, making a case for predictive analysis to be the prevailing
approach for detecting data races.
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