Efficient Deterministic Replay of Multithreaded Programs
Based on Efficient Tracking of Cross-Thread Dependences *

’Ohio State CSE Technical Report OSU-CISRC-12/14-TR20 (December 2014)‘

Michael D. Bond' Milind Kulkarni*

Man Caof

Meisam Fathi Salmi’ Jipeng Huang'

1 Ohio State University
1 Purdue University

mikebond@©cse.ohio-state.edu, milind@purdue.edu, {caoma,fathi,huangjip}@cse.ohio-state.edu

Abstract

Shared-memory parallel programs are inherently nondeter-
ministic, making it difficult to diagnose rare bugs and to
achieve deterministic execution, e.g., for replication. Exist-
ing multithreaded record & replay approaches have serious
limitations such as relying on custom hardware or slowing
programs by an order of magnitude.

This paper introduces an approach for multithreaded re-
cord & replay based on tracking and reproducing shared
memory dependences accurately and efficiently. We ex-
tend prior work that introduces an efficient dependence
recorder, by developing a new analysis for replaying de-
pendences. To demonstrate multithreaded record & replay,
we make substantial modifications to a Java virtual ma-
chine to control sources of nondeterminism in the JVM
that affect application-level determinism such as garbage
collection and class loading. We also introduce a research
methodology that enables us to demonstrate replay in the in-
herently nondeterministic JVM. Overall the performance of
both recorded and replayed executions compares favorably
with existing software-based record & replay approaches.

1. Introduction
Shared-memory programs are inherently nondeterministic
because memory accesses interleave in different ways. Non-
determinism makes it difficult to diagnose production-time
errors and to execute replicated multithreaded processes.
Researchers have proposed record & replay to address
this challenge [2, 17, 21-23, 25-27, 29, 32, 35, 36, 38, 40—
42]. One execution records enough information about thread
interleavings so that another execution can replay the same
thread interleavings faithfully, thus achieving the same ex-
ecution result (assuming other sources of nondeterminism,
such as inputs and I/O, are made deterministic). Record &
replay can support offline replay, online replay, or both. Of-
fline replay supports replaying a recorded execution at a later
time, enabling debugging of production-time errors. On-

*This material is based upon work supported by the National Science
Foundation under Grants CSR-1218695, CAREER-1253703, and CCF-
1421612.

line replay executes the replayed run concurrently with the
recorded run, allowing multiple instances of a process to run
simultaneously and deterministically, enabling replication-
based fault tolerance [11] and distribution of dynamic anal-
ysis among multiple execution instances [14, 33].

From a performance perspective, record & replay is
straightforward for single-threaded code: sources of nonde-
terminism, such as I/O, time, and other system-level effects,
are infrequent enough that recording and replaying them
adds low overhead. However, making record & replay ef-
ficient for multithreaded, shared-memory programs is con-
siderably more challenging because many program points
might be involved in nondeterministic interactions between
threads. Threads interleave nondeterministically at so-called
high-level races (races on synchronization operations) and
data races (races on ordinary loads and stores). While syn-
chronization operations tend to be infrequent enough that
they can be recorded and replayed efficiently (e.g., [38, 40]),
many loads and stores can potentially be involved in data
races, making it expensive to capture thread interactions ac-
curately. Existing work on record & replay either incurs high
overhead to track cross-thread dependences [25, 26], relies
on speculation and extra cores [27, 40], supports online or
offline replay but not both [2, 23, 27, 35, 41], or relies on
custom hardware [21, 22, 29, 32, 42].

Prior work called Octet introduces an efficient way to
track cross-thread dependences [9]. However, that work does
not describe nor demonstrate how to support replaying de-
pendences. Replaying dependences is challenging for two
reasons. (1) It is not straightforward how to replay depen-
dences based on recorded information [9]. (2) Demonstrat-
ing REPLAY is challenging, particularly in a managed lan-
guage virtual machine (VM) that has many sources of non-
determinism that affect application determinism.

This paper makes two main contributions. (1) We intro-
duce an approach for replaying dependences recorded by
prior work’s dependence recorder [9]. (2) We modify a JVM
and introduce a new methodology in order to control sources
of nondeterminism other than memory access interleavings.

These contributions demonstrate a new record & replay
approach that targets commodity systems, supports online
and offline replay, and adds lower overhead than competing
approaches (i.e., approaches that handle racy programs and
support both online and offline replay).

Our record & replay approach introduces two dynamic
analyses called RECORD and REPLAY. RECORD identifies
and records dependences using prior work’s approach [9].
REPLAY executes the program in parallel, enforcing the
cross-thread data dependences recorded by RECORD. RE-
PLAY necessarily elides program synchronization opera-
tions, which would otherwise conflict nondeterministically
with the recorded cross-threaded data dependences.

We have implemented RECORD and REPLAY in a high-
performance Java virtual machine. In order to demonstrate
REPLAY, we have (i) implemented novel approaches for
controlling sources of nondeterminism in the JVM and (ii)
introduced a research methodology that helps limit nonde-
terminism. While this support for determinism makes the ap-
proach unsuitable for most production use, it is not an inher-
ent limitation of our approach. The implementation currently
supports only offline replay, but the approach is suitable for
providing both offline and online replay.

Because REPLAY elides synchronization and enforces the
same dependences as RECORD, REPLAY is often faster than
RECORD. Overall, RECORD and REPLAY add lower over-
head than competing approaches that also support online and
offline replay in commodity systems.

2. Recording Cross-Thread Dependences

This section presents a dynamic analysis called RECORD
that records happens-before edges that soundly imply all
cross-thread dependences in an execution. RECORD builds
on an existing dynamic analysis called Octet [9]. The Octet
paper outlines and evaluates an approach for recording de-
pendences identified by Octet [9], but it does not provide an
algorithm for recording dependences.

2.1 Tracking Cross-Thread Dependences

Octet is a dynamic analysis that establishes happens-before
relationships [24] that soundly imply all cross-thread de-
pendences: data dependences (write-read, read—write, and
write—write dependences) involving two threads. Although
Octet instruments all accesses, it achieves low overhead by
making an optimistic tradeoff: an access not involved in
cross-thread dependences can use cheap, unsynchronized in-
strumentation; but an access involved in cross-thread depen-
dences requires expensive coordination among threads.

The Octet analysis identifies cross-thread dependences
by tracking the “locality” state of each potentially shared
object.! Before each program memory access, the analysis
uses this state to determine if the access might be involved in
a cross-thread dependence. An access that does not require
a state change is definitely not involved in a cross-thread

! This paper uses the term “object” to refer to any unit of shared memory.

dependence. Each object has one of the following states at
any given time:

WrEx;: Write exclusive for thread T. T may read or write
the object without changing the state. Newly allocated
objects start in WrEx; state, where T is the allocating
thread.

RdEx: Read exclusive for thread T. T may read but not
write the object without changing the state.

RdSh_: Read shared. Any thread T may read the object with-
out changing the state, subject to an up-to-date counter
T.rdShCount > c (described shortly).

When a thread attempts to access an object, Octet checks the
object’s state and updates the object’s state if necessary to
allow the access. Table 1 shows the state transition for each
possible initial state and access type. Some accesses require
no state transition (rows labeled ‘“None”); these accesses
are the common case in practice. Other accesses trigger a
state change; these accesses may be involved in cross-thread
dependences. When a program memory access triggers a
state change, it requires either a conflicting, upgrading, or
fence transition, described in the next section.

The following pseudocode shows the instrumentation that
Octet adds at each program load or store to track per-object
states. The analysis metadata o.state represents the state for
the object referenced by o. Octet adds the following code at
each program store:

if (o.state !'= WrExy) {

/* Slow path: change o.state & call RECORD hooks %/
}
o.

f = .., // program store
and at each program load:

if (!(o.state == WrExy ||
o.state == RdExy ||
(o.state == RdSh, && T.rdShCount >= c))) {
/* Slow path: change o.state & call RECORD hooks %/

}

. = o.f; // program load

As can be seen, Octet’s instrumentation is optimized for ac-
cesses that do not trigger a state change—these accesses take
the instrumentation “fast path.” Other accesses trigger the
“slow path,” which performs state transitions. Octet estab-
lishes happens-before edges for these transitions, which RE-
CORD identifies and records. Next we describe how these
transitions work.

2.2 Recording Happens-Before Edges

This section describes how Octet state transitions establish
happens-before edges, and how RECORD hooks onto these
transitions to identify and record happens-before edges in
per-thread logs.

Per-thread logs and dynamic program location. A happens-
before edge involves a source point on one thread and a sink
point on another thread. Each thread T records information

Fast path/ Transition Old New RECORD records
slow path type state Access state happens-before edge?
WrEx; RorWby T Same
Fast None RdExy RbyT Same No
RdSh, Rby Tif T.rdShCount > c Same
WrExr; Wby T2 WrEx,
.. WrExr; Rby T2 RdAEx,
Conflicting RdEx;, W by T2 WrEsr, Yes
Slow RdSh, Wby T WrEx
. RdExy Wby T WrExt No
Upgrading pip Ry T2 RdSh,gasnce Yes
Fence RdSh, R by Tif T.rdShCount <c¢ (T.rdShCount =c) Yes

Table 1. Octet’s state transitions establish happens-before edges. The last column shows which happens-before edges RECORD records.

iwro H '
H '
-~)

|
| (WrExT1) i
= <7 R e < 7
safe | ' H H ' i
poiny ird o | | | |
| (RAExT2) ! : ! !
: ' S~o yrdo H ' '
]] ~a(RdShe) i H H
! H ", T - Sdl ird p
! ! i ' i © 2r(RdShc+1)
] 0]
: : : l LT
]] H H e i
i i ' b ird p '
' ' ¥
: : : *Ird o :(fence) :
' i(fence) ! !
: H H irdo H
' ' ' H

awin

T1 T2 T3 T4 T5 T6

Figure 1. Example execution illustrating state transitions.

in its per-thread log, T.log, to enable replaying the source or
sink of a happens-before edge.

RECORD and REPLAY need to agree on when events oc-
cur in program execution. They use dynamic program loca-
tion (DPL) to represent a dynamic program point uniquely.
We represent DPL as (1) a static site (e.g., method and byte-
code index) and (2) a per-thread counter T.dynCtr incre-
mented on every loop back edge, method entry, and method
return.

Conflicting transitions. If an access to an object by a thread
conflicts with the object’s state, the access’s instrumentation
triggers a conflicting transition (middle rows of Table 1). In
Figure 1, suppose thread T1 has previously written to an ob-
ject o, so o’s state is WrEx, . Before T2 performs a load from
o, RECORD’s instrumentation triggers a conflicting transi-
tion.

T2 cannot simply change o’s state—even if it uses synch-
ronization—since it might race with T1 continuing to per-
form unsynchronized accesses to o, potentially missing
cross-thread dependences. To handle the conflicting tran-
sition correctly, T2 coordinates with T1 to ensure that T1
does not continue accessing o. (At a write to an object in
RdSh, state, a thread coordinates separately with every other
thread.) Performing coordination establishes a happens-
before relationship that implies the dependence from T1’s
last access of o to T2’s current load of o. T1 only responds

to T2’s request when T1 is at a safe point: a point that is
definitely not between an access and its corresponding in-
strumentation. If T1 is blocked (e.g., waiting for a lock or
for a coordination response), then T2 coordinates with T1
“implicitly,” ensuring progress [9].

Figure 1 shows the happens-before edge that RECORD
must capture: from a safe point on T1 to T2’s load. RECORD
piggybacks on coordination in order to record the source and
sink of this happens-before edge. T1’s safe point records the
source of this happens-before edge simply by recording its
current DPL, by executing the following pseudocode:

T.log.recordEvent(RESPONSE, currentSitelD, T.dynCtr);

where T is the current thread, and currentSitelD identifies
the current static program location (method and bytecode
index). T.log.recordEvent() records an event identifier (e.g.,
RESPONSE) and any other arguments in T’s file-system-
based log.

To record the happens-before sink in Figure 1, T2 records
its current DPL and the value of a counter T1.responses: the
number of coordination responses that T1 has responded to
so far (incremented by T1 at each response [9]). T2 executes
the following pseudocode:

T.log.recordEvent(REQUEST, currentSitelD, T.dynCtr,
sourceThread.responses);
// Helps with recording upgrading transitions :
if (isRead)
T.numConflReads++;

where sourceThread is the responding thread (T1 in Fig-
ure 1). The conditional increment of the per-thread counter
T.numConflReads helps with recording upgrading transi-
tions, described next.

Upgrading transitions. An upgrading transition expands
the set of allowable accesses compared with accesses al-
lowed under the old state. In Figure 1, before T3 performs a
read to o in the RdExy, state, it upgrades o’s state to RdSh,.
The value c that is part of the new RdSh. state is the cur-
rent value of a global counter gRdShCtr that each upgrading
transition to RdSh increments atomically. Threads use this
counter to determine whether they have already read an ob-

ject in RdSh, state—or some other object in another state
RdSh,, where ¢'>c.

On an upgrading transition to a RdSh state, such as the
transition from RdEx, to RdSh. in Figure 1, RECORD must
record two happens-before edges:

1. A happens-before edge from the DPL on T2 that changed
the same object to RdExy, state. This happens-before
edge is needed in order to transitively capture the cross-
thread dependence from the last write (by T1 in this case)
to T3’s read. Identifying this happens-before edge is dif-
ficult because the DPL on T2 that changed the object to
RdEx+, is no longer known when T3’s upgrading transi-
tion happens. Instead, RECORD records a more conser-
vative happens-before edge: from T2’s last transition of
any object to RdEx,.

2. A happens-before edge from the previous upgrade of any
object to RdSh, i.e., from the upgrade to RdSh._; (not
shown in the figure). This happens-before edge is needed
to transitively capture all write-read dependences cap-
tured via fence transitions (described next). For exam-
ple, it is necessary to capture the happens-before edge be-
tween transitions to RdSh, and RdSh,,; in order to tran-
sitively capture the dependence from T1’s write of o to
T5’s read of o. RECORD records this edge by recording
the new value of gRdShCtr, i.e., c.

The current thread T records both of these happens-before
edges using the following pseudocode:

T.Iog.recordEvent(UPGRADING, currentSitelD, T.dynCtr,
sourceThread.numConflReads, c);

where c is the result of atomically incrementing gRdShCtr,
and sourceThread is the thread such that the object’s old state
18 RAEXgourceThread-

A same-thread upgrading transition from RdEx; to WrEx+
does not require recording happens-before edges. Any cross-
thread dependences are implied by happens-before relation-
ships established as part of the prior transition to RdEx; [9].

Fence transitions. Next in Figure 1, T4 reads o, trigger-
ing a fence transition because T4’s thread-local read-shared
counter T4.rdShCount < c. The fence transition establishes
a happens-before relationship with T3’s transition to RdSh,
and updates T.rdShCount to c. When T5 reads o, T5 has al-
ready read an object p in state RdSh,, ;, so no fence transition
is triggered. However, a transitive happens-before relation-
ship with the prior write to o has been established transitively
by (1) the happens-before edge from o’s RdSh, transition to
p’s RdSh.,; transition, (2) the fence transition on T6 when
accessing p, and (3) program order on T5.

At a fence transitions for an object in RdSh. state, RE-
CORD records the happens-before edge from (1) the last
upgrade to RdSh. to (2) the current program point. Fig-
ure 1 shows two fence transitions: one establishes a happens-
before edge from T3 to T4, and the other establishes an edge

from T6 to T5. A thread records a fence transition by record-
ing the current DPL and the value of c in the RdSh, state:

T.log.recordEvent(FENCE, currentSitelD, T.dynCtr, c);
where c is the value in the object’s state RdSh,.

3. Replaying Cross-Thread Dependences
This section overviews REPLAY, a dynamic analysis that
enforces the happens-before edges that RECORD recorded.
REPLAY maintains dynamic program location (DPL), but
it does not track locality states. At program memory accesses
and safe points, REPLAY performs operations (based on per-
thread logs from RECORD) to replay the same sources and
sinks of happens-before edges as during RECORD.
Replaying happens-before edges between memory ac-
cesses is sufficient to enforce the same thread interleavings
as during a recorded run, so the replayed execution need not
perform program synchronization operations. In fact, the re-
played execution must elide synchronization operations in
order to avoid deadlock, as Section 3.2 explains.

3.1 Replaying Recorded Happens-Before Edges
REPLAY replays the same happens-before edges that RE-
CORD recorded. It must replay these happens-before re-
lationships both soundly and precisely. Missing a relation
could lead to different interleavings; strengthening a rela-
tion could lead to deadlock. During REPLAY, each thread
reads from the same per-thread log as during RECORD. At
a high level, a thread replays the source of a happens-before
edge by incrementing some counter (depending on the type
of edge recorded) at the same DPL as during RECORD. A
thread replays the sink of a happens-before edge by wait-
ing, at the same DPL as during RECORD, for the appropriate
counter of the source thread to reach the recorded value.

Fast-path instrumentation. For accesses that do not trigger
a transition, RECORD records nothing. REPLAY optimizes
for this case by performing the following “fast-path” instru-
mentation at each program memory access and safe point:

if (T.log.nextDynCtr == T.dynCtr &&
T.log. nextSitelD == currentSitelD) {
/* Slow path: replay happens-before edge(s) */

. = o.f; // program memory access

This check succeeds only if the current DPL matches the
DPL of the next recorded event. If so, the instrumenta-
tion executes the “slow path,” which replays happens-before
edge(s) from one of the following cases.

Conflicting transitions. Replaying a conflicting transition
involves replaying both the source and sink of the estab-
lished happens-before edge. Referring back to Figure 1
as an example, REPLAY replays the happens-before edge
from T1’s safe point to T2’s load. REPLAY uses the follow-
ing slow-path instrumentation to replay the source of the
happens-before edge:

if (T.log.nextEventType == RESPONSE) {

memory_fence;
T.responses++;
T.log.readNextEntry();

}

The memory fence helps ensure visibility from the source
to the sink of the happens-before edge. The readNextEntry()
operation reads the next event from the log and updates the
variables T.log.nextDynCtr, T.log.nextSitelD, T.log.nextEvent-
Type, and other event data (depending on the event type).

To replay the sink of the happens-before edge, slow-
path instrumentation performs the following instrumenta-
tion, which waits for the source thread’s responses counter
to “catch up” to the recorded value:

if (T.log.nextEventType == REQUEST) {
S = T.log.nextSourceThread;
while (S.responses < T.log.nextExpectedResponses) {
memory_fence; /* and possible non-busy waiting x/

}
if (isRead) // Assist replay of

T.numConflReads++; // upgrading transitions
memory_fence;
T.log.readNextEntry();

}

where T.log.nextSourceThread is the recorded responding
thread, and T.log.nextExpectedResponses is the recorded
value of S.responses. As part of replaying a transition to
RdExt, T increments the counter T.numConflReads, just as
RECORD does, in order to help replay upgrading transitions.

Upgrading transitions. To replay an upgrading transition,
a thread must replay two happens-before edges recorded at
upgrading transitions: one from the last reader thread, and
one that globally orders gRdShCtr increments. The follow-
ing pseudocode shows how the instrumentation slow path
replays these happens-before edges:

if (T.log.nextEventType == UPGRADING) {
S = T.log.nextSourceThread;
while (S.numConflReads < T.log.nextNumConflReads) {
memory_fence; /« and possible non-busy waiting x/

while (gRdShCtr < T.log.nextRdShCtr — 1) {
memory_fence; /« and possible non-busy waiting x/

}
gRdShCtr = T.log.nextRdShCtr;

memory_fence;
T.log.readNextEntry();

}

where T.log.nextNumConflReads is the recorded value of
S.numConflReads, and T.log.nextRdShCtr is the recorded
value of gRdShCtr.

The current thread T first replays the happens-before edge
from the last reader thread, by waiting for it to reach the
same point it reached during RECORD. In Figure 1, T3 re-
plays the edge from T2 by waiting for T2 to perform the
same number of conflicting transitions involving a read (i.e.,

// T1: /) T2:
synchronized (m) { synchronized (m) {
o.f = ..; = o.f;

Figure 2. An example cross-thread data dependence.

transitions to RdExr,), which guarantees that T3’s access
transitively happens after the last write (by T1).

Next, T waits for all prior gRdShCtr increments to occur,
since gRdShCtr increments are globally ordered. T waits un-
til gRdShCtr equals T.log.nextRdShCtr - 1; then it increments
gRdShCtr to T.log.nextRdShCtr.

Fence transitions. To replay a fence transition on an object
in RdSh, state, a thread needs to replay the happens-before
edge from the prior transition to RdSh.. Thread T’s instru-
mentation slow path uses the following pseudocode to wait
for gRdShCtr to reach the expected value:

if (T.log.nextEventType == FENCE) {
while (gRdShCtr < T.log.nextRdShCtr) {
memory_fence; /x and possible non-busy waiting x/

memory_fence;
T.log.readNextEntry();

}

where T.log.nextRdShCtr is the recorded value c (from
RdSh.). In Figure 1, T4 replays a fence transition by wait-
ing for the global counter gRdShCtr to reach c. Similarly, T5
replays a fence transition by waiting for gRdShCtr to reach
c+1.

3.2 Eliding Program Synchronization Operations

A program uses program synchronization operations—such
as lock acquire and release, monitor wait and notify, and
thread fork and join—to provide mutual exclusion, ordering,
and visibility, effectively constraining an execution’s possi-
ble cross-thread dependences. REPLAY provides these prop-
erties by enforcing all cross-thread data dependences, so a
replayed execution does not need to perform program syn-
chronization operations.

Not only can REPLAY elide synchronization operations,
but it must do so. Consider the example in Figure 2. Suppose
during RECORD, T1 acquires m’s lock first, so T1’s write of
o.f occurs before the read, and RECORD records a happens-
before edge from T1 to T2’s read. If REPLAY performed syn-
chronization operations, then T2 could acquire m’s lock first,
making it impossible to replay the write-read dependence on
o. In that case, REPLAY would deadlock: T2’s load would
wait on T1’s store, while T1 would wait to acquire m.

REPLAY elides synchronization operations such as lock
acquire and release and monitor wait, by treating them as
no-ops. REPLAY (and RECORD) handle an access to a Java
volatile variable or a C++ atomic variable like they handle
any regular memory access.

Prior work typically records and replays synchroniza-
tion operations. RecPlay records and replays only synchro-
nization operations but is unsound for racy programs [38].
Chimera introduces synchronization in the form of “weak
locks” at potentially racy memory accesses, but profile-
based coarsening is necessary to get good performance [26].
Respec and DoublePlay record only synchronization opera-
tions, but execute speculatively and check program state to
ensure data races do not derail determinism [27, 40]. RE-
CORD and REPLAY could record and replay the order of
synchronization operations in addition to cross-thread data
dependences, adding additional, unnecessary overhead

3.3 Soundness of REPLAY

The correctness of record & replay relies on the observation
that value determinism (all reads performed by a replayed
execution produce the same results as the original recorded
execution) is achieved if all dependences in the recorded run
are mimicked in the replayed run.

To preserve all dependences between a recorded execu-
tion and its replay, it suffices to preserve only cross-thread
dependences. Other dependences, which occur entirely on a
single thread, will be enforced by the reordering restrictions
of the compiler and hardware.

Prior work shows that Octet creates happens-before re-
lationships between all cross-thread dependences in the
recorded run [9]. The information logged by RECORD dur-
ing a recorded run is sufficient to allow REPLAY to deter-
ministically replay the recorded execution:

Theorem 1. Given logs produced by RECORD during an
execution, REPLAY deterministically replays that execution,
preserving all dependences.

Proof. We proceed by showing that every cross-thread de-
pendence in the recorded execution (hereafter referred to as
rec) is respected by the replayed execution (referred to as
rep). We need only account for cross-thread dependences
that are not transitively implied by other dependences. We
consider each type of dependence in turn.

wx — wy In rec, this dependence is captured by RECORD
as a transition from WrExy to WrExy, with Y as the re-
questing thread and X as the responding thread. X’s log
notes the recorded value of its response counter, rc;,
with a precise count of how many responses X had made
prior to this point, as well as its DPL, while Y’s log
notes the expected value of X’s response counter, rc,,
with r¢, > rc;. As X runs rep, it maintains a response
counter, 7c. When X reaches the dynamic program point
where the coordination occurred, rc = rc,. It then in-
crements rc by the number of responses it made at this
point, so ¢ > rc,. When Y reaches the point where it
made the request, it compares rc, to rc. If rc > rc,, B
can be sure that A has already performed its write, and
hence B’s write will happen later, preserving the depen-
dence.

rx — wy In rec, prior to performing wy, Y will find obj
in either RdExy or RdSh, state. In either case, RECORD
initiates coordination between X and Y. This scenario is
therefore analogous to that of the previous case, and wy
will occur after rx in rep, preserving the dependence.

wx — Ty There are three possible types of RECORD state
transitions in rec that might arise due to this dependence.
(1) WrExx — RdExy requires coordination, and would
be enforced as in the previous cases. (ii) If WrExy —
RdEx;, — RdSh, Y reads obj after some third thread
put it into RdEx,. In this case, REPLAY uses a simi-
lar mechanism as above to ensure that Z has moved
past the point where it put obj into RdEx,, but using the
Z.numConflReads counter instead of the response counter.
Note that REPLAY will also cause Y to wait until any
prior transitions to RdSh are complete (i.e., transitions to
RdSh., where ¢’ < ¢). (iii) ry could happen when obj was
already in RdSh, state. In this case, we note that updates
to gRdShCtr are replayed at the correct times, and that
during rec, Y would record c in its log before performing
ry. Before performing ry in rep, Y ensures that gRd-
ShCtr is at least the recorded value. This ensures that all
RAEx — RdSh transitions that happened before 7y in rec
have happened in rep, again preserving the dependence.

All other dependences in the program are transitively im-
plied by some combination of these cross-thread depen-
dences and intra-thread dependences, which are maintained
by the reordering rules of the compiler and hardware. Hence,
all dependences in rec are preserved in rep, providing value
determinism. O

4. Deterministic Execution

The prior sections described how to record and replay an ex-
ecution’s cross-thread data dependences. In the real world,
an execution provided with the same set of inputs has other
sources of nondeterminism—particularly for a managed lan-
guage virtual machine such as a Java virtual machine (JVM).
Language VMs create significant nondeterminism as a con-
sequence of supporting features such as dynamic class load-
ing, dynamic optimization, and automatic memory manage-
ment.

To demonstrate our REPLAY analysis, our goal is to pro-
vide application-level determinism: the RECORD and RE-
PLAY runs should appear identical from the application’s
perspective, i.e., the two runs should perform the same loads
from memory and get the same values, and the two runs
should produce the same output (i.e., perform the same sys-
tem calls).> To provide application-level determinism, the
JVM internally does not need to execute deterministically.

However, some nondeterministic behaviors of the JVM
affect application behavior that would otherwise be deter-
ministic. To provide application-level determinism, the JVM

2 Note that because Java does not make object addresses available to the ap-
plication, application-level determinism does not require layout determin-
ism. However, it does require deterministic hash codes (Section 4.3).

must control these sources of nondeterminism. We mod-
ify the JVM to handle sources of nondeterminism, either
by recording and replaying them or by making them in-
herently deterministic. To deal with two particularly chal-
lenging sources of nondeterminism—dynamic compilation
and class loading—we describe and implement a research
methodology called fork-and-recompile that allows us to
demonstrate replay.

With substantially more engineering effort, we believe a
production implementation could control sources of nonde-
terminism without requiring a research methodology, mak-
ing it practical for production settings (Section 4.6).

Since our efforts to provide application-level determinism
are largely at the implementation level, we first overview
the implementations of RECORD and REPLAY. Subsequent
subsections describe challenges and corresponding solutions
for handling nondeterminism.

4.1 Implementation Overview

We have implemented RECORD and REPLAY in Jikes RVM,
a high-performance Java virtual machine [1]. The RECORD
implementation builds on the publicly available Octet im-
plementation [9]. We will make our RECORD and REPLAY
implementations publicly available.

Instrumentation. RECORD and REPLAY modify Jikes RVM’s

dynamic compilers to instrument all application and Java li-
brary code. However, Jikes RVM is itself written in Java, so
it calls into the same Java libraries. RECORD and REPLAY
need to instrument libraries called from the application, but
not libraries called from the JVM. To accomplish this, the
dynamic compilers compile two versions of each library
method: for application context and JVM context.

Maintaining DPL. During RECORD and REPLAY, each
thread T maintains its current DPL by incrementing T.dynCtr
at every method entry, method return, and loop back edge.
During RECORD, at every program point in the application
that is a potential safe point—meaning it might call into the
VM and record a happens-before source—instrumentation
stores the current static site in a per-thread variable. Com-
bining this static site with T.dynCtr allows RECORD to com-
pute an application DPL even though the coordination re-
sponse can occur within nested calls to the VM. REPLAY
instruments all safe points to check whether the current DPL
matches the next event in the current thread’s log.

Eliding synchronization operations. REPLAY modifies the
dynamic compilers to ignore lock acquire and release op-
erations (correponding to synchonized blocks in the original
Java code). During REPLAY, Object.wait(), Object.notify(),
and Object.notifyAll() have no effect if the this object’s lock
has not been acquired.

Instrumenting special accesses. The application performs
some memory accesses by calling into the VM to perform
the accesses. Examples are calling System.arraycopy(), Ob-
ject.clone(), I/O routines that implicitly read from or write
to buffers), and calls from native code that access the Java

heap. We have identified these cases and added explicit in-
strumentation so that RECORD and REPLAY perform appro-
priate checks before these memory accesses.

4.2 Compilation and Class Loading Nondeterminism

Challenges of dynamic compilation. A compiled method
may be recompiled multiple times at different optimization
levels. Method inlining leads to different control flow, affect-
ing the frequency of T.dynCtr increments—and thus com-
puting DPL nondeterministically. Optimizations may elimi-
nate redundant loads and stores nondeterministically.

Optimization decisions depend on timer-based sampling,
and optimized compilation is by default performed concur-
rently with program execution [3], so optimization and ex-
ecution of optimized code are inherently nondeterministic
from run to run. A production implementation could, in the-
ory, record and replay optimization decisions. Jikes RVM
does not provide such support. It does support a methodol-
ogy called replay compilation that records some compilation
decisions and profile information (called “advice”) to make
compilation decisions somewhat deterministic in a run that
uses the advice [20], but compiled code is not deterministic
between runs that generate and use the advice.

Challenges of dynamic class loading and initialization.
When a class is first accessed, the accessing thread triggers
class loading and initialization of the class. Which thread is
first is nondeterministic; application-level replay of cross-
thread dependences does not make class loading and ini-
tialization deterministic automatically. Initializing a class in-
volves calling the class’s static initializer (static variable ini-
tialization and static {...} code blocks), which is applica-
tion code that must be executed by the same thread dur-
ing RECORD and REPLAY in order to provide determinism.
Although triggering of class initializers can, in theory, be
recorded and replayed, a more difficult problem is making
custom class loaders (class loaders that call code provided
by the application) deterministic. In custom class loading,
the activities of the application and VM are tightly coupled,
and accounting for this coupling is difficult: application-
context code elides synchronization operations, but VM-
context code perform synchronization operations, leading to
deadlocks that we have been unable to avoid without com-
promising determinism.

Solutions. A production-quality implementation could ad-
dress the challenges of nondeterministic dynamic compila-
tion, class initialization, and custom class loading through
careful recording and replaying of these behaviors. Instead,
we use a research methodology called fork-and-recompile
that is unsuitable for most production settings, but enables
demonstrating that RECORD and REPLAY preserve deter-
minism.

In fork-and-recompile methodology, the JVM executes
two iterations of the program. The sole purpose of the first,
“warmup” iteration of the program is to compile all the code,
and load and initialize all classes. These behaviors can be

nondeterministic, since both RECORD and REPLAY runs will
start from the same state after the warmup iteration finishes.

After the warmup iteration finishes, the JVM forks its
process using the fork system call. Since fork on Linux works
correctly only if the process has a single thread, our imple-
mentation first forces all threads—any remaining application
threads, as well as system threads that perform compilation,
GC, and profiling—except the main thread to terminate. Af-
ter fork returns, we designate the child process as the RE-
CORD process and the parent process as the REPLAY pro-
cess. The REPLAY process waits for the RECORD process
to complete. After the RECORD process completes, the RE-
PLAY process proceeds. With some effort, it should be pos-
sible to run RECORD and REPLAY simultaneously, with RE-
PLAY reading directly from RECORD’s logs, demonstrating
online replay.

The RECORD and REPLAY processes each first recompile
all application-context methods with RECORD or REPLAY
instrumentation, respectively. They recompile each method
using the same optimizations from the warmup iteration,
providing a realistic mix of optimized and unoptimized code
for evaluating performance. The RECORD and REPLAY pro-
cesses thus start from the same “state” in terms of dynamic
compilation and loaded and initialized classes.

4.3 Nondeterminism Caused by Garbage Collection

Challenges. Jikes RVM’s default high-performance gar-
bage collector (GC) is stop-the-world, parallel, and genera-
tional [7]. When a thread’s allocation triggers GC, all threads
stop at GC-safe points (periodic program points where GC
can happen safely). Then multiple GC threads perform either
a nursery collection (which collects only recently allocated
objects) or a full-heap collection. When GC is triggered is
nondeterministic, even if the application executes determin-
istically, because the JVM allocates objects into the same
heap. Furthermore, stopping each thread at a GC-safe point
is inherently racy and nondeterministic.

In theory, triggering GC nondeterministically might not
affect application-level determinism, but in practice it presents
several challenges. Nondeterministic GC leads to different
behaviors for weak references and finalizers, whose behavior
depends on when dead objects are collected. Furthermore,
low-level 1/O routines in Jikes RVM behave differently de-
pending on whether buffer objects are initially in moving or
non-moving spaces (since they must operate on unmovable
buffer objects). Triggering GC nondeterministically can also
conflict with replaying recorded happens-before edges: if a
thread is waiting at a happens-before sink, it cannot stop for
GC—since program memory accesses are not, in general,
GC-safe points.

Not only is nondeterministic triggering of GC problem-
atic, but so is the nondeterministic behavior of GC, which
moves objects nondeterministically and thus leads to nonde-
terministic object addresses. Furthermore, initial allocation
addresses are nondeterministic due to VM allocation non-
determinism and GC nondeterminism. In theory, nondeter-

ministic object addresses should not affect application-level
determinism since object addresses are not visible to the ap-
plication. However, in Jikes RVM and other JVMs, the de-
fault implementation of Object.hashCode() (i.e., the identity
hash code) returns a value based on the object’s address.?
Hash code values affect application determinism, e.g., they
affect layout and iteration order in a hash table whose key
objects use the identity hash code.

Solutions. To avoid conflicting with other replayed happens-
before edges and to avoid nondeterministic behavior of weak
references, finalizers, and I/O routines, the implementation
records and replays GC points. During RECORD, each thread
that triggers or joins a collection, records the event in its log:
the DPL and whether the collection was nursery or full-heap.
During REPLAY, threads perform GC at the recorded DPLs;
they cannot trigger GC otherwise.

To support application-level determinism, we allow ob-
ject addresses to be nondeterministic but make hash codes
be deterministic. RECORD and REPLAY instrument each
object allocation so it sets a dedicated header word to a de-
terministic encoding of the current thread T and dynamic
counter T.dynCtr. The identity hash code operation Ob-
ject.hashCode() reads from and returns this value.

4.4 Other Nondeterministic System Behavior

Challenges. Querying the current system time is inherently
nondeterministic and can affect application behavior nonde-
terministically. Nondeterministic I/O is similarly problem-
atic, e.g., for interactive applications or network 1/0.

Solutions. Recording and replaying the value of system
time could be expensive if queried often. Instead, our im-
plementation simulates deterministic time by keeping track
of a counter that represents “logical time.” It increments log-
ical time whenever time is queried. Although time is con-
ceptually a global value, for simplicitly our implementation
uses per-thread counters. This approach will not work well
if a thread compares a time value from another thread or if
time values need to correspond better to actual time values.
However, it is good enough for the programs we evaluate.
Our implementation and experiments avoid most chal-
lenges of nondeterministic I/O. We evaluate benchmarked
programs that read and write the file system determinis-
tically, without reading from nondeterministic I/O sources
such as the console or network. The implementation pro-
vides RECORD and REPLAY with the same initial directory
structure by backing up the current directory’s contents be-
fore RECORD starts, and restoring the same before REPLAY
starts. A production implementation would need to record
and replay nondeterministic I/O sources and other system
behavior such as the side effects of system calls. In contrast,
our goal is to provide the minimum system- and JVM-level
determinism needed to achieve application-level determin-

3If GC moves an object whose Object.hashCode() method has been
called, GC annotates the moved object with its old address, so that Ob-
ject.hashCode() continues to return the same value.

ism for our evaluated programs, in order to demonstrate and
evaluate the RECORD and REPLAY analyses.

4.5 Verifying Determinism
Even if an execution replays successfully, how do we know
that its application-level behavior is the same as during the
recorded execution? We define “same behavior” as mean-
ing that the program performed the same loads from mem-
ory and got the same values. The RECORD and REPLAY
implementations support value logging configurations that
record (during RECORD) and check (during REPLAY) the
value of every program load and store—or a hash of the last
k values—ensuring that REPLAY’s enforcement of happens-
before edges is sufficient to produce value determinism.
The program should also perform the same system calls,
e.g., output to the console. To ensure system call determin-
ism, we rely on each benchmark’s harness, which validates
the contents of the console output and output files.

4.6 Making Determinism Practical

With significantly more effort, it should be possible to pro-
vide determinism with standard “adaptive” methodology and
with minimal performance impact. Prior work has provided
efficient determinism for JVMs written in C/C++ (e.g., [13,
43]). A key challenge for our implementation is that Jikes
RVM itself is written in Java and shares many components
with the application, including the heap, the adaptive op-
timization subsystem, and the libraries. Cleanly separating
the JVM and application would make it substantially easier
and cheaper to provide application-level determinism. For
example, application object addresses could be made deter-
ministic, automatically providing deterministic hash codes.
Compilation and class loading decisions could be recorded
and replayed in a way that would not interact poorly with the
JVM.

5. Evaluation

This section evaluates the effectiveness and efficiency of RE-
CORD and REPLAY using our JVM determinism modifica-
tions and fork-and-recompile methodology.

5.1 Methodology

Benchmarks. Our experiments execute benchmarked ver-
sions of large, real-world applications: the DaCapo Bench-
marks versions 2006-10-MR2 and bach-9.12 (distinguished
with suffixes 6 and 9) [6], excluding benchmarks that are
single-threaded or that (unmodified) Jikes RVM cannot exe-
cute correctly; and fixed-workload versions of SPECjbb2000
and SPECjbb2005.* We exclude eclipse6 from most ex-
periments because (1) it fails with the fork-and-recompile
methodology (we are unable to restart eclipse6’s worker
threads correctly), and (2) runtime support for determinism
causes eclipseb to execute incorrectly.

Experimental setup. To account for run-to-run variability
(due to dynamic optimization guided by timer-based sam-

“http://www.spec.org/jbb200{0,5}, http://users.cecs.anu.
edu.au/~steveb/research/research-infrastructure/pjbb2005

pling) and any machine noise, each performance result is
the median of 15 trials. We also show the mean, as the cen-
ter of 95% confidence intervals. We build and use a high-
performance configuration of Jikes RVM that adaptively op-
timizes the application as it runs.

Platform. The experiments execute on an AMD Opteron
6272 system with eight 2 GHz 8-core processors (64 cores
total), running 64-bit RedHat Enterprise Linux 6.5, kernel
2.6.32. We execute xalan9 using only 32 cores since it shows
anomalous overhead with 64 cores (for xalan9 on 64 cores,
all RECORD and REPLAY configurations outperform the un-
modified JVM, which we have determined is a side effect of
Linux thread scheduling decisions).

5.2 RECORD & REPLAY Characteristics

Table 2 shows statistics for recorded and replayed execu-
tions. Of 12 evaluated programs, 9 have at least 8 simulta-
neously live threads, and 5 programs have at least 32 live
threads. Critically, we see that most accesses trigger no state
transition, requiring no logging. Programs with a higher
rate of triggering state transitions incur higher costs (Sec-
tion 5.3). The last column of the table shows that programs
with a higher rate of state transitions lead to a higher rate
of logging events, although the rate does not exceed 10
megabytes per second.

Table 3 reports how frequently REPLAY successfully pro-
vides deterministic replay. Each percentage is the number of
successfully replayed trials out of five trials using the fork-
and-recompile methodology. We enable value logging in or-
der to ensure that successfully replayed runs execute deter-
ministically (i.e., load the same value at each load). For most
programs, the default REPLAY configuration consistently re-
plays recorded executions successfully. For xalan9, REPLAY
sometimes fails. These failures are due to limitations of our
implementation: sources of nondeterminism that we have
not yet identified and addressed. (We have also observed that
a few other programs will occasionally fail to replay. We ran
additional trials to verify that with high confidence, the ex-
pected number of successful trials is closer to five than four.)

How do we know REPLAY is actually doing anything im-
portant? That is, is it actually necessary to record and replay
cross-thread dependences in order to replay these programs
deterministically? The Ignore HB edges configuration ig-
nores recorded happens-before edges during replay, but en-
ables value logging. All executions fail, either with value
logging errors or other program errors. The Keep sync. con-
figuration performs synchronization during replay, instead of
eliding synchronization. All programs except jython9, which
has little multithreaded behavior, deadlock consistently.
These configurations’ failures demonstrate that replaying
these programs deterministically does not happen serendip-
itously. Instead, deterministic replay requires recording and
replaying cross-thread dependences accurately, and eliding
synchronization operations during REPLAY.

Threads Transition triggered by each access Log REPLAY Tgnore Keep
. default HB edges sync.
All Live | None Confl. Upgr. Fence MB/s healdbG 100% 0% 0%
hsqldb6 | 402 102 | 6.9x10° | 9.1x10° 13x10° 63x10" | 0.7 s | oo ot 0%
lusearch6 | 65 65 | 2.7x10° | 48x10° 1.9x10®> 25x10° | <0.1 6 100!70 00/" 0;
xalan6 9 9] 1.1x10" | 1.8x107 23x10° 43x10® | 7.7 :\a/:)rag 100% ot 0%
avrora9 27 27 | 5.8x10° | 5.9x10° 89x10° 4.4x10° | 25 . ; ; ’
. 9 1 Jjython9 100% 0% 80%
jython9 3 3 | 7.3x10 5.1x10 0 0| <0.1 luindex9 100% 0% 0%
luindex9 2 2 [37x10° | 46x10> 52x10' 1.0x10° | <0.1 IE'Seaf;‘hg 100% o o
lusearchd | 64 64 | 2.6x10° | 3.7x10° 7.9x10®> 6.8x10° | <0.1 40 100(70 0(70 0470
pmd9 5 51 72x10° | 54x10* 6.8x10° 2.0x10* | 0.1 e 0 100% o 0%
sunflowd | 128 64 | 1.7x10" | 7.2x10° 52x10° 2.1x10* | 0.1 i:lan‘gw 0t ot 0%
xalan9 32 32 | L1x10™ | 20x107 14x10* 6.0x10* | 9.7 52000 100(70 0170 0470
pjbb2000 | 37 9 | 20x10° | 1.2x10° 3.1x10° 3.1x10* | 1.1 p!bb2005 100% o 0%
pjbb2005 9 9 | 7.8x10° | 46x107 6.4x10° 1.5x107 438 P) ’ ? ¢
. . . Table 3. Percentage of five executions re-
Table 2. Characteristics of recorded and replayed executions, based on a statistics- .
. . played successfully, for various REPLAY
gathering configuration of RECORD. .
configurations.
5.3 Performance 0 Octet
This section first evaluates RECORD by executing the JVM Q : Eecorg nondet
using the default “adaptive” methodology in which the JVM et 90 — ceor
recompiles and optimizes methods at run time using online, g §8] 1 i
sampling-based profiling. It then evaluates RECORD and 'S;: 28] T
REPLAY using our fork-and-recompile methodology. 2 43;8] T
o 304
E ﬂﬁ
Adaptive methodology. Figure 3 shows the overhead that é 03 |
RECORD add§ to programs when using adaptive r'nethOflol- &~ I % /}@ ('@e*‘? ” ‘?”r JJ’I/} /,,10 s, p,)]d 2, to / pJé 50/65 e,
ogy. Each bar is the run-time overhead over unmodified Jikes ,5 0'*9 ,5 00 "7@‘9

RVM. The first bar is the overhead of using Octet to track
cross-thread dependences [9]. Octet adds 26% overhead on
average. Programs with a higher rate of state transitions—
especially conflicting transitions (Table 2)—incur more
overhead. The program with the highest overhead, pjbb2005,
also has the highest rate of conflicting transitions. High-
conflict programs are a general concern for our RECORD
analysis and other analyses built on top of optimistic track-
ing of dependences. Addressing this issue is beyond the
scope of this paper, but we note that recent work develops
a hybrid of optimistic and pessimistic tracking that adap-
tively applies pessimistic tracking to high-conflict objects,
reducing overhead substantially for high-conflict programs
without significantly impacting low-conflict programs [12].

Record nondet includes the additional costs to record
happens-before edges identified by Octet. These costs in-
clude writing happens-before sources and sinks to per-thread
logs on disk, incrementing T.dynCtr to maintain DPL, and
setting the last application site ID at every potential safe
point that might call into the JVM. This nondeterministic
RECORD configuration adds an additional 17% overhead
(relative to baseline execution) over Octet, and 43% overall.

Finally, Record is the full default RECORD configuration.
It adds support for making some JVM features deterministic,
such as making GC, hash codes, and system time determin-
istic. These features have their costs, e.g., deterministic hash
codes must be initialized at allocation time, but together they
add modest overhead: 6% (relative to baseline execution) on

Figure 3. RECORD performance using default adaptlve methodol-
ogy.

_ O Record

N = Reple

< 120 s _

=

s 100 ¥

%]

"g 80

z 60

g 40

= 20

E
5, ‘I'e/ 2, /J// %, P, Sty S, Ty S
% o, 2 g, & 65,065, "0,
903 66{]6 a9 g Q’e*e‘?réob ’70,,/ %, 005 ’17@19

Figure 4. RECORD and REPLAY performance using fork-and-
recompile methodology.

average over nondeterministic RECORD. Overall, RECORD
slows program execution by 49% on average.

These RECORD results serve as a comparison against the
following results, which use nonstandard methodology but
support both RECORD and REPLAY.

Fork-and-recompile methodology. Figure 4 shows the over-
head RECORD and REPLAY add over an unmodified JVM.
All configurations, including the baseline (unmodified JVM)
configuration, use the fork-and-recompile methodology de-
scribed in Section 4.2.

Record is the default recording configuration; it is the
same as the Record configuration from Figure 3. With fork-

and-recompile methodology, RECORD adds 44% overhead
on average, which is comparable to the 49% overhead us-
ing adaptive methodology (Figure 3). For some programs,
the overhead of RECORD is substantially different between
the two methodologies. We find that differences are due to
the fact that adaptive execution includes compilation time
and spends time executing unoptimized code before opti-
mizing it, whereas fork-and-recompile methodology does
not. Shorter-running programs experience this effect more
acutely than longer-running programs.

Replay is the full default REPLAY analysis: it replays
cross-thread dependences, tracks DPL by updating T.dynCtr,
and includes the determinism changes used by RECORD. We
exclude xalan9 because it almost never replays successfully
without value logging, although it often replays successfully
with value logging (Table 3), since its nondeterministic fail-
ures are timing sensitive.

Interestingly, REPLAY often outperforms RECORD. RE-
PLAY can provide lower overhead than RECORD because
it is cheaper to replay known dependences than to record
unknown dependences. In particular, RECORD requires that
threads coordinate for a conflicting transition, but replaying
a conflicting transition’s happens-before edge requires no
synchronization except memory fences. Furthermore, RE-
PLAY can improve performance over RECORD or even the
baseline by enabling more parallelism. Since REPLAY elides
program synchronization, it allows code protected by criti-
cal sections and other synchronization to overlap more. For
example, in Figure 2 (page 5), both threads can enter their
critical sections at the same time. The benchmark pjbb2005
uses coarse-grained synchronization that is more conser-
vative than the actual cross-thread data dependences. By
eliding synchronization and replaying only the cross-thread
data dependences, REPLAY outperforms baseline (unmodi-
fied JVM) execution.

On average, REPLAY’s run-time overhead is 29%. The
overheads of RECORD and REPLAY compare favorably with
other approaches that provide both online and offline replay
on commodity systems [26, 40].

6. Related Work

Existing record & replay approaches incur high overhead,
require hardware support, and/or have other serious limita-
tions.

Tracking dependences. RecPlay and JaRec record high-
level races (races between synchronization operations) by
recording dependences among synchronization operations
such as lock acquire-release and monitor wait—notify [19,
38]. However, these approaches are unsound for executions
with data races.

Data races are difficult to eliminate; programmers acci-
dentally or intentionally introduce data races when trying
to minimize synchronization costs. Detecting or eliminating
data races is a well-studied problem (e.g., [10, 18, 30]). Even
with recent advances, dynamic approaches slow programs
by about an order of magnitude [18]. Static race detection

analysis reports many false positives and does not scale well
to large, real-world programs [30, 31].

Instant Replay and ORDER track dependences in racy ex-
ecutions by instrumenting all memory accesses, adding high
instrumentation overhead [25, 43]. Dunlap et al. achieve re-
cord and replay in commodity hardware by using virtual
memory page protection to trigger hardware traps at poten-
tially conflicting accesses [17]; false sharing at page granu-
larity can easily lead to high overhead.

Chimera uses whole-program static race detection to
eliminate instrumentation at definitely data-race-free ac-
cesses [26]. However, the remaining instrumentation still
slows programs by more than an order of magnitude. Chimera
reduces costs further by converting fine-grained synchro-
nization to coarse-grained synchronization. However, this
lock coarsening relies on profiling to identify low-conflict
regions suitable for the optimization. Chimera slows pro-
grams by 86% on average for CPU-intensive benchmarks.
Our approach is complementary to Chimera’s and could po-
tentially be combined with it.

Hardware support. Custom hardware support can achieve
low-overhead record & replay by piggybacking on cache co-
herence protocols [21, 22, 29, 32, 36, 42]. However, manu-
facturers have been reluctant to add complexity to already-
complex coherence protocols.

Sidestepping recording dependences. Several approaches
avoid recording cross-thread dependences explicitly. Respec
supports online replay by recording synchronization oper-
ations and speculating that most data races do not lead to
external effects, but cannot provide offline replay without
additional support such as probabilistic search [27]. Other
approaches offer probabilistic offline replay based on repro-
ducing executions from limited recorded information, but
do not support online replay, nor are they guaranteed to
reproduce an execution within a bounded number of at-
tempts [2, 23, 35, 41]. DoublePlay supports both online and
offline replay [40], but needs twice the number of cores to
achieve low overhead. Without extra cores, DoublePlay adds
100% overhead.

Deterministic execution. An alternative to record & replay
is executing multithreaded programs deterministically [5,
15, 16, 28, 34]. Runtime determinism approaches face chal-
lenges similar to those for record & replay. They either do
not handle racy programs [34], add high overhead [5, 15],
or require custom hardware [16]. Dthreads provides deter-
minism by mapping threads to processes in order to pro-
vide separate address spaces for each thread, which it merges
at each synchronization point [28]. This approach does not
scale well to programs that use a lot of fine-grained synchro-
nization or cross-thread sharing of pages.

New languages can provide determinism at the language
level [8, 37]. Determinator provides determinism with sup-
port from the programming model and operating system [4].
Using these approaches requires rewriting programs.

Making JVMs deterministic. Prior work has made JVMs
deterministic through a combination of controlling and
recording nondeterministic behavior [13, 19, 43]. That work
either modifies JVMs written in C/C++ [13, 43], or does not
modify the JVM and instead uses dynamic bytecode rewrit-
ing [19]. Our implementation faces an additional challenge:
it targets a JVM written in Java that shares components with
the application. But rather than producing a production-
ready approach, our goal is to evaluate the RECORD and
REPLAY analyses, so we introduce a research methodology
and JVM modifications that control most sources of JVM
nondeterminism. Prior work called Ditto also modifies Jikes
RVM, but its support for deterministic replay appears to be
quite limited: it can replay microbenchmarks only, not real
programs [39].

7. Conclusion

Our new REPLAY analysis shows how to replay depen-
dences recorded by an existing efficient RECORD analysis.
To demonstrate replayability of our prototype implementa-
tion, we modify a JVM to control sources of nondetermin-
ism and to support a research methodology that helps pro-
vide application-level determinism. Our RECORD and RE-
PLAY analyses outperform competing approaches that target
commodity systems and do not have severe limitations, sug-
gesting that this work is a promising direction for achieving
practical multithreaded record & replay in production sys-
tems.

Acknowledgments

Thanks to Swarnendu Biswas, Brian Demsky, Joe Devietti,
Madan Musuvathi, Aritra Sengupta, and Minjia Zhang for
helpful ideas and other feedback.

References

[1] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi,
P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKin-
ley, M. Mergen, J. E. B. Moss, T. Ngo, and V. Sarkar. The
Jikes Research Virtual Machine Project: Building an Open-
Source Research Community. /BM Systems Journal, 44:399—
417, 2005.

[2] G. Altekar and I. Stoica. ODR: Output-Deterministic Replay
for Multicore Debugging. In SOSP, pages 193-206, 2009.

[3] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney.
Adaptive Optimization in the Jalapefio JVM. In OOPSLA,
pages 47-65, 2000.

[4] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient System-
Enforced Deterministic Parallelism. In OSDI, pages 1-16,
2010.

[5] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Gross-
man. CoreDet: A Compiler and Runtime System for Deter-
ministic Multithreaded Execution. In ASPLOS, pages 53-64,
2010.

[6] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanovi¢, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo Benchmarks:
Java Benchmarking Development and Analysis. In OOPSLA,
pages 169-190, 2006.

[7] S. M. Blackburn and K. S. McKinley. Immix: A Mark-Region
Garbage Collector with Space Efficiency, Fast Collection, and
Mutator Performance. In PLDI, pages 22-32, 2008.

[8] R. L. Bocchino, Jr., V. S. Adve, S. V. Adve, and M. Snir.
Parallel Programming Must Be Deterministic by Default. In
HotPar, pages 4-9, 2009.

[9] M. D. Bond, M. Kulkarni, M. Cao, M. Zhang, M. Fathi Salmi,
S. Biswas, A. Sengupta, and J. Huang. Octet: Capturing
and Controlling Cross-Thread Dependences Efficiently. In
OOPSLA, pages 693-712, 2013.

[10] C. Boyapati, R. Lee, and M. Rinard. Ownership Types for
Safe Programming: Preventing Data Races and Deadlocks. In
OOPSLA, pages 211-230, 2002.

[11] T. C. Bressoud and F. B. Schneider. Hypervisor-Based Fault
Tolerance. In SOSP, pages 1-11, 1995.

[12] M. Cao, M. Zhang, and M. D. Bond. Drinking from Both
Glasses: Adaptively Combining Pessimistic and Optimistic
Synchronization for Efficient Parallel Runtime Support. In
WoDet, 2014.

[13] J.-D. Choi and H. Srinivasan. Deterministic Replay of Java
Multithreaded Applications. In SPDT, pages 48-59, 1998.

[14] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling Dynamic
Program Analysis from Execution in Virtual Environments. In
USENIX, pages 1-14, 2008.

[15] H. Cui, J. Wu, C.-C. Tsai, and J. Yang. Stable Deterministic
Multithreading Through Schedule Memoization. In OSDI,
pages 1-13, 2010.

[16] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Deter-
ministic Shared Memory Multiprocessing. In ASPLOS, pages
85-96, 2009.

[17] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M.
Chen. Execution Replay of Multiprocessor Virtual Machines.
In ACM/USENIX International Conference on Virtual Execu-
tion Environments, pages 121-130, 2008.

[18] C.Flanagan and S. N. Freund. FastTrack: Efficient and Precise
Dynamic Race Detection. In PLDI, pages 121-133, 20009.

[19] A. Georges, M. Christiaens, M. Ronsse, and K. De Boss-
chere. JaRec: A Portable Record/Replay Environment for
Multi-threaded Java Applications. Software Practice & Ex-
perience, 34(6):523-547, 2004.

[20] A. Georges, L. Eeckhout, and D. Buytaert. Java Performance
Evaluation through Rigorous Replay Compilation. In OOP-
SLA, pages 367-384, 2008.

[21] D. R. Hower and M. D. Hill. Rerun: Exploiting Episodes for
Lightweight Memory Race Recording. In ISCA, pages 265—
276, 2008.

[22] D. R. Hower, P. Montesinos, L. Ceze, M. D. Hill, and J. Tor-
rellas. Two Hardware-Based Approaches for Deterministic
Multiprocessor Replay. CACM, 52:93-100, 2009.

[23] J. Huang, C. Zhang, and J. Dolby. CLAP: Recording Local
Executions to Reproduce Concurrency Failures. In PLDI,
pages 141-152, 2013.

[24] L. Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. CACM, 21(7):558-565, 1978.

[25] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging Parallel
Programs with Instant Replay. IEEE TOC, 36:471-482, 1987.

[26] D. Lee, P. M. Chen, J. Flinn, and S. Narayanasamy. Chimera:
Hybrid Program Analysis for Determinism. In PLDI, pages
463-474, 2012.

[27] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M.
Chen, and J. Flinn. Respec: Efficient Online Multiprocessor
Replay via Speculation and External Determinism. In ASP-
LOS, pages 77-90, 2010.

[28] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: Efficient
Deterministic Multithreading. In SOSP, pages 327-336,2011.

[29] P. Montesinos, L. Ceze, and J. Torrellas. DeLorean: Recording
and Deterministically Replaying Shared-Memory Multipro-
cessor Execution Efficiently. In ISCA, pages 289-300, 2008.

[30] M. Naik and A. Aiken. Conditional Must Not Aliasing for
Static Race Detection. In POPL, pages 327-338, 2007.

[31] M. Naik, A. Aiken, and J. Whaley. Effective Static Race
Detection for Java. In PLDI, pages 308-319, 2006.

[32] S. Narayanasamy, C. Pereira, and B. Calder. Recording
Shared Memory Dependencies Using Strata. In ASPLOS,
pages 229-240, 2006.

[33] E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn. Paral-
lelizing Security Checks on Commodity Hardware. In ASP-
LOS, pages 308-318, 2008.

[34] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient
Deterministic Multithreading in Software. In ASPLOS, pages
97-108, 2009.

[35] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and
S. Lu. PRES: Probabilistic Replay with Execution Sketching
on Multiprocessors. In SOSP, pages 177-192, 2009.

[36] G. Pokam, C. Pereira, K. Danne, R. Kassa, and A.-R.
Adl-Tabatabai. Architecting a Chunk-based Memory Race
Recorder in Modern CMPs. In MICRO, pages 576-585, 2009.

[37] M. C. Rinard and M. S. Lam. The Design, Implementation,
and Evaluation of Jade. TOPLAS, 20:483-545, 1998.

[38] M. Ronsse and K. De Bosschere. RecPlay: A Fully Integrated
Practical Record/Replay System. TOCS, 17:133-152, 1999.

[39] J. M. Silva, J. Simdo, and L. Veiga. Ditto — Deterministic
Execution Replayability-as-a-Service for Java VM on Multi-
processors. In Middleware, pages 405—424, 2013.

[40] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen,
J. Flinn, and S. Narayanasamy. DoublePlay: Parallelizing
Sequential Logging and Replay. In ASPLOS, pages 15-26,
2011.

[41] D. Weeratunge, X. Zhang, and S. Jagannathan. Analyzing
Multicore Dumps to Facilitate Concurrency Bug Reproduc-
tion. In ASPLOS, pages 155-166, 2010.

[42] M. Xu, R. Bodik, and M. D. Hill. A “Flight Data Recorder”
for Enabling Full-system Multiprocessor Deterministic Re-
play. In ISCA, pages 122-135, 2003.

[43] Z. Yang, M. Yang, L. Xu, H. Chen, and B. Zang. ORDER:
Object Centric Deterministic Replay for Java. In USENIX,
pages 30-30, 2011.

