Probabilistic Calling Context *

Michael D. Bond

Kathryn S. McKinley

Department of Computer Sciences
The University of Texas at Austin

{mikebond,mckinley}@cs.utexas.edu

Abstract

Calling contextenhances program understanding and dy-
namic analyses by providing a rich representation of pro-
gram location. Compared to imperative programs, object-
oriented programs use more interprocedural and less in-1.

traprocedural control flow, increasing the importance ai-co

Keywords Calling Context, Dynamic Context Sensitivity,
Probabilistic, Residual Testing, Anomaly-Based Bug Detec
tion, Intrusion Detection, Managed Languages

Introduction
Several trends are making it harder for developers to under-

text sensitivity for analysis. However, prior online meth- stand, test, debug, and optimize applications. Due to featu
ods for computing calling context, such as stack-walking or demand, one trend is that applications are larger, more com-

maintaining the current location in a calling context trae

plicated, and often combine modules from disparate sources

expensive in time and space. This paper introduces a new onAnother trend is that more software is written in managed

line approach calledrobabilistic calling contex{PCC) that
continuously maintains a probabilistically unique valap+
resenting the current calling context. For millions of ureq

languages, such as Java and C# [46]. Development prac-
tices in these languages divide functionality into smalthme
ods and thus express context as interprocedural control flow

contexts, a 32-bit PCC value has few conflicts. Computing rather than intraprocedural control flow. Together the eens
the PCC value adds 3% average overhead to a Java virtuabjuences of these trends are that (1) programmers have more
machine. PCC is well-suited to clients that detect new or difficulty understanding an entire application, (2) exhias
anomalous behavior since PCC values from training and pro-testing is infeasible and even attaining high testing cager
duction runs can be compared easily to detect new context-is challenging, and (3) static analyses are less effective.

sensitive behavior; clients that query the PCC value at ev-

As a result, developers are turning to dynamic tools to

ery system call, Java utility call, and Java API call add 0-9% understand, test, and optimize their prograrmynamic

overhead on average. PCC adds space overhead proportionaghlling contextis the sequence of active method invoca-
to the distinct contexts stored by the client (one word per tions that lead to a program location. Previous work in
context). Our results indicate PCC is efficient and accurate testing [9, 11, 16, 20, 35, 39], debugging and error report-
enough to use in deployed software for residual testing, buging [18, 31, 36, 41], and security [14, 23] demonstrates its

detection, and intrusion detection.

Categories and Subject DescriptoreD.2.5 [Software Engi-
neeringd: Testing and Debugging—Monitors, Testing tools

General Terms Reliability, Security, Performance, Exper-
imentation

*This work is supported by an Intel fellowship, NSF CCF-04298
NSF CCR-0311829, NSF EIA-0303609, DARPA F33615-03-C-4106

tel, IBM, and Microsoft. Any opinions, findings and concloiss expressed
herein are the authors’ and do not necessarily reflect thitbe sponsors.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA'07, October 21-25, 2007, Montréal, Québec, Canada.
Copyright(© 2007 ACM 978-1-59593-786-5/07/0010. . . $5.00

utility. Calling context is powerful because it captures in
terprocedural behavior and yet is easy for programmers to
understand. For example, programmers frequently exam-
ine calling context, in the form of error stack traces, dgrin
debugging. Untested behavior such as unexercised calling
contexts are calledesiduals[37]. If residual calling con-
texts are observed in deployed software, they are clues to
unmet test coverage obligations and potential bugs. Anoma-
lous sequences of calling contexts at system calls canlrevea
security vulnerabilities [14, 23].

Computing calling context cheaply is a challenge in non-
object-oriented languages such as C, and it is even more
challenging in object-oriented languages. Compared with C
programs, Java programs exacerbate this problem because
they generally express more control flow interprocedurally
in the call graph, rather than intraprocedurally in the ooint
flow graph. Our results show that Java has more distinct
contexts than comparable C programs [2, 42]. For example,

large C programs such as GCC and 147.vortex have 57,77 inuously computing a 32-bit PCC value adds on average 3%
and 257,710 distinct calling contexts respectively [2,,42] overhead. Clients add additional overhead to query the PCC
but the remaining six SPEC CPU C programs in Ammons value at client-specific program points. We approximate the
et al.'s workload have fewer than 5,000 contexts. In cohtras overhead of querying the PCC value by looking up the value
we find that 5 of 11 DaCapo Java benchmarks [10] contain in a hash table on each query. Querying at every call in the
more than 1,000,000 distinct calling contexts, and 5 others application increases execution times by an average of 49%
contain more than 100,000 (Section 5). and thus is probably only practical at testing time. In sev-

The simplest method for capturing the current calling eral interesting production scenarios, we demonstrate tha
context is walking the stack. For example, Valgrind walks querying the PCC value frequently is feasible: querying at
the stack at each memory allocation to record its context- every system call adds no measurable overhead, at every
sensitive program location, and reports this information i java.util call adds 3% overhead; and examining it at ev-
the event of a bug [36, 41]. If the client of calling contexts ery Java API call adds 9% overhead. Computing the PCC
very rarely needs to know the context, then the high over- value adds no space overhead, but clients add space over-
head of stack-walking is easily tolerated. An alternative t head proportional to the number of distinct contexts they
walking the stack is to build a calling context tree (CCT) dy- store (one word per context), which is millions in some cases
namically and to track continuously the program’s position but still much smaller than all statically possible congext
in the CCT [2, 42]. Unfortunately, tracking the program’s In contrast, other approaches use space proportional to all
current position in a CCT adds a factor of 2 to 4 to pro- contexts and/or use many words per context. To our knowl-
gram runtimes. These overheads are unacceptable for mosedge, PCC is the first approach to achieve low-overhead and
deployed systems. Recent work samples hot calling contextsalways-available calling context. We believe this functb
to reduce overhead for optimizations [52]. However, sam- ity can enable new online client analyses that improve pro-
pling is not appropriate for testing, debugging, or chegkin gram correctness, reliability, and security.
security violations since these applications need cowenig
both hot and cold contexts. 2. Motivation

This paper introduces an approach calf@dbabilistic
calling context(PCC) that continuously maintains a value
that represents the current calling context with very low
overhead. PCC computes this value by evaluating a func-
tion at each call site. To differentiate calling contextatth

This section motivates efficient tracking of calling coritex
for improving testing, debugging, and security. Some pre-
vious work shows dynamic context sensitivity helps these
tasks [9, 14, 31, 23]. However, most prior work uses in-
: . . . traprocedural paths or no control-flow sensitivity for thes
include the same methods in a different order, we require atasks [3, 18, 20, 24, 47, 48] since paths are often good

function that is non-commutative. To optimize a sequence enouah for canturing proaram behavior and calling context
of inlined method calls into a single operation, we prefer a . 9 P 9 prog 9

function whose composition is cheap to compute. We show IS too expensive to F:ompu_te. Because developers more of-
the computation” < 3 x V/+cshas these properties, where ten now choose object-oriented, managed languages such

V is the current value of the calling context, acgls a hash as Java and C# [46], calling context is growing in impor-

value for the current call site. We show in theory and practic igfﬁogoirnt\?oecsz;i(t)izkz.em ien ?anr((:)i’e‘;i\:gl ?:Lon%:g‘mlsoyv;earrrore
that this function produces a unique value for up to millions T P

of contexts with relatively few conflicts (false negatives) fewer cor;trollt:]Ion paths (|.e._,r|hr7traprocedurlill (ior;]trcl)l f}OWbI
necessary, a 64-bit PCC value can probabilistically diffier comparedwi programs. 1hIS paper Seexs 1o nelp enaple

tiate billions of unique calling contexs. the switch to dynamic context-sensitivity analyses by mak-

PCC is well suited to adding context sensitivity to dy- ing them efficient enough for deployed systems.

namic analyses that detect new or anomalous program be-Testing. Half of application development time is spent in
havior such as coverage testing, residual testing, anemaly testing [6, 35]. A key part of testing is coverage, and one
based bug detection, and intrusion detection. These slient metric of coverage is exercising unique statements, paths,
naturally have draining phase, which collects program be- calling contexts [9], and calling sequences that include th
havior, and aproductionphase, which compares behavior order of calls and returns [20, 3Residual testingdentifies
against training behavior. Calling contexts across rums ca yntested coverage, such as paths, that occur at production
be compared easily by comparing PCC values: two different time but were not observed during testing [37, 47]. PCC
PCC values definitely represent different contexts. Alftou s well-suited to context-sensitive residual testing sifiic

a new PCC value indicates a new context, the context is notjgentifies new contexts with high probability while adding
determinable from the value, so PCC walks the stack when it |ow enough overhead for deployed software.

encounters anomalous behavior to report the calling contex _ o _ _
Using Jikes RVM [1, 26], we demonstrate on the DaCapo Debugging. Identifying program behavior correlated with

Benchmarks, SPEC JBB2000, and SPEC JVM98 that con-incorrect execution often helps programmers find bugs. Pre-
vious work in anomaly-based bug detectidialso called

invariant-based bug detecticamd statistical bug isolatioh cluding each system call’s return address in the sequence of
tracks program behavior such as variables’ values acrosssystem calls, constraining possible attacks [14].

multiple runs to identify behavior that is well-correlated We show that the expense of walking the stack stands in
with errors [19, 30, 32]. We are not aware of work that uses the way of deployed use of context-sensitive system calls
calling context for anomaly-based bug detection, although but that PCC permits cheap computation of context sensi-
the high time and space overhead may be a factor. Sometivity (Section 5). An intrusion detection system could use
previous work uses a limited amount of calling context in PCC to record the calling context for each system call in
features in bug detection. Liu et al. ubehavior graphs sequences of system calls. Because PCC is probabilistic, it
which include call relationships (essentially one levedafi- may incur false negatives if it misses anomalous calling con
text sensitivity), to help identify call chains correlatetth texts that map to the same value as an already-seen calling
bugs [31].Clarify usescall-tree profiling which measures context. However, the conflict rate is very low, 0.1% or less
two levels of context sensitivity as well as the order ofgall for up to 10 million contexts with 32-bit values, and 64-bit
to classify program executions for better error reporteng, values provide even fewer conflicts. A determined attacker
task similar to bug-finding [18]. We note that programmers with knowledge of PCC could potentially engineer an at-
already appreciate the usefulness of calling contextimgeb tack using an anomalous calling context with a conflicting
ging tasks. For example, developers typically start with an PCC value. We believe randomizing call site values on the
error stack trace to diagnose a crash ®alfjrind, a testing- host would make a “conflict attack” virtually impossible; al
time tool, reports context-sensitive allocation sitesHeap though we do not prove it.

blocks involved in errors [36].

Artemisprovides a framework for selectively sampling In summary, existing work shows dynamic calling con-
bug detection instrumentation to keep overhead low [13]. text is useful for residual testing, anomaly-based bugdete
The key idea is to track contexts and to avoid sampling con- tion, and intrusion detection. Trends toward managed lan-
texts that have already been sampled. Artemis’s definition o guages and more complex applications are likely to make
context includes values of local and global variables besdo dynamic context sensitivity more essential, and PCC has the
not include calling context, possibly because of the cost of potential to help make it feasible.
computing it. PCC makes it viable to add calling context to

Artemis. 3. Probabilistic Calling Context

Security. Anomaly-based intrusion detectiseeks to de- This section describes our approach for efficiently comput-
tect new attacks by identifying anomalous (i.e., previgusl ing a value that represents the current calling contextand i
unseen) program behavior [14, 24, 48]. Existing approachesunique with high probability.

typically keep track of system calls and flag system call se-

guences that deviate from previously-observed behavidr an 3-1 Calling Context

may indicate an attacker has hijacked the application. Wag- The current program location (method and line number) and
ner and Soto show that attackers can circumvent these apthe active call sites on the stack define dynamic calling con-
proaches bymimickingnormal application behavior while text. For example, the first line below is the current program

still accomplishing attacks [48]. Adding context sensffiv. |ocation, and the remaining lines are the active call sites:
to the model of acceptable behavior constrains what attack-

ers can do without getting caught and recent work on in- 2t com.mckoi.database. jdbcserver.JDBCDatabaseInterface.

. X . . . execQuery () :213
trusion detection uses calling context to identify program . com.mckoi . database . jdbc . MConnection.

control-flow hijacking [14, 23, 51]. Inoue on page 109 in executeQuery () : 348

his dissertation writes the following [23]: at com.mckoi.database.jdbc.MStatement.
executeQuery () :110

at com.mckoi.database.jdbc.MStatement.
executeQuery () : 127

at Test.main() :48

Adding context by increasing the number of observed stack
frames can make some attacks significantly more difficult.
So-called “mimicry” attacks take advantage of the inner
workings of applications to attack while still behaving 5im
larly to the attacked application. Adding context makes thi 3.2 Probabilistic Approach

more difficult because it restricts the attacker to usingyonl o . .
methods usually invoked from within the enclosing method ~ Probabilistic calling context (PCC) keeps track of an ieteg

that the exploit attacks, instead of any method invoked by ~ Vvalue,V, thatrepresents the current calling context. Our goal
the entire application. is to compute random, independent values for each context.
To determine the feasibility of this approach, we assume a
Zhang et al. show that k-length interprocedural paths gath- random number generator and use the following formula to
ered with hardware reveal possible security violationd.[51 determine the number of expected conflicts given population
Feng et al. utilize a single level of context sensitivity by i sizen and 32- or 64-bit values [34]:

Random Expected conflicts method() {

values 32-bit values 64-bit values int temp = V; // ADDED: load PCC value
1,000 0(0.0%) 0 (0.0%) V- 1); // ADDED t 1
= emp, cs_1); : compute new value
10,000 0(0.0%) 0(0.0%) cs_1: calleeA(.I.).); // call site I1J
100,000 1 (0.0%) 0 (0.0%) o
1,000,000 116 (0.0%) 0 (0.0%) V = f(temp, cs_2); // ADDED: compute new value
10,000,000 11,632 (0.1%) 0 (0.0%) cs_2: calleeB(...); // call site 2
100,000,000 1,155,170 (1.2%) 0 (0.0%) cee
1,000,000,000 107,882,641 (10.8%) 0 (0.0%) }
10,000,000,000 6,123,623,065 (61.2%) 3 (0.0%)

We have two requirements for this function: non-commuitiv
and efficient composability.

Table 1. Expected conflicts for various populations of ran- o
dom numbers using 32-bit and 64-bit values. Non-commutativity. We have found that our benchmarks

contain many distinct calling contexts that differ only in
the order of call sites. For example, we want to differenti-
m—1\" ate calling context ABC from CAB. We therefore require
Elconflicty :==n —m +m <—> a function that ismon-commutativand thus computes a

m - . o
.) distinct value when call sites occur in different orders.
wherem is the size of the value range (e.gqn, = 232 for

32-bit values). Table 1 shows the expected number of con- E'ficient composability. We want to handle method inlin-
flicts for populations ranging in size from one thousand to ing efficiently and gracefully because of its widespread

ten billion. For example, if we choose 10 million random use in high-performance static and dynamic compilers.
32-bit numbers, we can expect 11,632 conflicts on average. l;o;examplﬁ, Sl_JpI_pose me'[(;lﬁ¢allsf caIIsAC caIIIIsD.
Applied to the calling context problem, if a program exe- || the compiler |.r(;|neﬂ|3 an Chmto b novg fca ShD'_
cutes 10 million distinct calling contexts, we expect to snis Iwe (\jNan|t| to avol e\;]a uating t free t.|mesh efore the in-
contexts at a rate of just over over 0.1%, which is likely good Ined ca toD. By ¢ 0osing a unction w 0S€ ComposI-
enough for many clients. tion can be computed efficiently ahead-of-time, we can

The programs we evaluate execute fewer than 10 million statically compute thmlmed_call site value that repre-
distinct calling contexts (exceptclipse with the large sents the sequence of call sitl8sC, D.

input; Section 5.1). For programs with many more distinct We use the following non-commutative but efficiently com-

calling contexts, or for clients that need greater proligbil posable function to compute PCC values:
guarantees, 64-bit values should suffice. For example, one

can expect only a handful of conflicts for as many as 10 f(V,c9) :=3xV +cs

billion distinct calling contexts. where x is multiplication (modulc23?), and+ is addition

3.3 Computing Calling Context Values (modulo23?). We statically computesfor a call site with a
. . I hash of the method and line number.
The previous section shows that assigning randomly-chosen L) .
The function is non-commutative because evaluating call

PCC values results in an acceptably small level of conflicts . .~ = . X
. o . : . sites in different orders do not give the same value in génera
(i.e., distinct calling contexts with the same value). This

section introduces an online approach for computing a PCC
value that has the following properties: f(f(V,csa),csp) = 9xV + (3 xcsa)+csp)

e PCC values must be distributed roughly randomly so that 7 f(f(V;csg),csa) = 9xV + (3 x €sp) +Csy)

the number of value conflicts is close to the ideal. since in general

¢ The PCC value must be deterministic, i.e., a given calling

context always computes the same value. (3xcsy)+csg # (3xcCsp)+cCsy
e Computing the next PCC value from the current PCC Non-commutativity is a result of mixing addition and multi-
value must be efficient. plication (which are commutative operations by themsélves

At the same time, the function’s composition is efficient be-
cause addition and multiplication are distributive with re
spect to each other:

We use a function

f(V,e9)
whereV is the current calling context value aosiis the call F(F(V.csa), Cs5) =
site at which the function is evaluated. We add instrumenta-) PRAMSB) =
tion that computes the new value Bfat each call site by 3X (3xV +cCsy)+cCsp =

applying f as follows: 9xV +(3xcsy+cCsg)

Note that(3 x cs4 + csg) is a compile-time constant, so the csis an integer representing the call site. PCC could assign
composition is as efficient to compute As each call site a random integer using a lookup table, but this
Gropp and Langou et al. use similar functions to compute approach adds space overhead and complicates comparing
hashes for Message Passing Interface (MPI) data types [17PCC values across runs. Instead, PCC computes a hash of
28]. We experimented with these and other related func- the call site’s method name, declaring class name, descript
tions. For example, multiplying by 2 is attractive because i and line number. This computation is efficient because it
is equivalent to bitwise shift, but bits for methods low oeth occurs once at compile time and produces the same results
stack are lost as they are pushed off to the left. Circuldt shi across multiple program executions.
(equivalent to multiplication by 2 modul3? — 1) solves this Implicitly, V' is a global variable modified at each call
problem, but when combined with addition modaf — 1 site. To implement PCC in the context of multiple threads
(necessary to keep efficient composability), we lose infor- and processors, we use per-thread PCC values. Since multi-
mation about multiple consecutive recursive calls; i.2, 3 ple threads map to a single processor, each processor keeps

consecutive recursive calls computg¥(V, cs), which for
this function is simplyy’ for anyV andcs

3.4 Querying Calling Context Values

track of the PCC value for the current thread. When a proces-
sor switches threads, it stores the PCC value to the outgoing
thread and loads the PCC value from the incoming thread.
Accessing the PCC value is efficient in Jikes RVM because

This section describes how clients can query PCC values atit reserves a register for per-processor storage. In sgstem
program points. In any given method,represents the cur- without efficient access to per-processor storage, an imple
rent dynamic contexgxcept for the position in the currently mentation could modify the calling conventions to add the
executing methado checkV at a given program point, we PCC value as an implicit parameter to every method. While
simply applyf to V using the value ofsfor the currentsite this alternative approach is elegant, we did not implement i
(not necessary a call site), i.e., current local method mmed | because it would require pervasive changes to Jikes RVM.
number: To compute PCC values, the compiler adds instrumenta-
tion that (1) at the beginning of each method, lo&dmto

a local variable, (2) at each call site, computes the nekt cal
ing context withf and updates the glob&l, and (3) at the
method return, stores the local copy back to the gldbal
(this redundancy is helpful for correctly maintainifgin

the face of exception control flow). At inlined call siteseth
PCC is most applicable to clients that detect new or anoma-compiler combines multiple call site values ahead-of-time
lous behavior, which naturally tend to have two modes, into a single value and inserts a function that is an efficient
training andproduction In training, clients can query PCC composition of multiple instances ¢f(Section 3.3).

values and store them. In production, clients query PCC val-

ues and determine if they represent anomalous behavior; if

so, PCC walks the stack to determine the calling context Querying the PCC value. Clients may query PCC values
represented by the anomalous PCC value. Many anoma-at different program points, and they may use PCC val-
lous contexts in production could add high overhead becauseues differently. For example, an intrusion detection dlien
each new context requires walking the stack. However, this might query the PCC value at each system call, recording se-

method() {

cs: query(£(V, cs)); // ADDED: query PCC value
statement_of_interest; // application code

}

case should be uncommon for a well-trained application.

4. Implementation

PCC's approach is suitable for implementation in ahead-
of-time or dynamic compilation systems. This section de-
scribes how we implement PCC in Jikes RVM 2.4.6, a high-
performance Java-in-Java virtual machine [4, 26]. PCC is
publicly available on the Jikes RVM Research Archive [27].

Jikes RVM uses two compilers at run time. When a
method first executes, Jikes RVM compiles it with a non-
optimizingbaselinecompiler. When a method becomes hot,
Jikes RVM recompiles it with aroptimizing compiler at
successively higher levels of optimization. We modify both
compilers to insert PCC instrumentation.

Computing the PCC value. PCC adds instrumentation to
maintainV” that computes (V, cs) at each call site, where

guences of consecutive context-sensitive program latgitio
(in the form of PCC values) during training, then detect-
ing anomalous sequences during production. A client per-
forms work per query that is likely to be similar to hash ta-
ble lookup, so our implementation looks up the PCC value
in a global hash table at each query point. The hash table
implementsopen-address hashiranddouble hashing12]
using an array of* 32-bit slots. To look up a PCC value,
the queryindexes the array using the lokbits of V, and
checks if the indexed slot contais In the common case,
the slot containd’, and no further action is needed. In the
uncommon case, either (1) the slot is empty (contains zero),
in which case PCC stords in the slot; or (2) the slot holds
another PCC value, in which case theery performs sec-
ondary hashing by advancisgt 1 slots wheres is the high

32 — k bits of V. Secondary hashing tries three times to find
a non-conflicting slot, then gives up.

For efficiency, we inline the common case into hot, opti-
mized code. For simplicity in our prototype implementation
we use a fixed-size array wit® = 1,048, 576 elements (4
MB of space), but a more flexible implementation would ad-

PCC implements this definition of calling context. PCC in-
struments application methods only, and in these methods it
instruments call sites to application and library methadus.
cases where the application calls the VM directly, and the

just the size to accommodate the number of stored PCC val-VM then invokes the application (e.g., for class initializa

ues collected during training (e.qg., intrusion detectiltients

tion), PCC walks the stack to determine the correct value of

could use much less space since there are relatively few dis-V/, which is feasible because it happens infrequently.
tinct contexts at system calls). The hash table approach is

efficient as long as the table size is roughly at least twiee th

5. Results

size of the number of entries in the table, or table conflicts This section evaluates the performance and accuracy of

will lead to high overhead. Of our benchmargsydqueries

the most distinct PCC values, over 800,000 at Java API calls

(Table 3), for which a hash table with a million elements is

probably not quite large enough for good performance. We
also measure the overhead of querying the PCC value at ev

ery call as an upper bound for a PCC client (Figure 1); for
several benchmarks with millions of distinct contexts, the

hash table is not large enough, resulting in many hash ta-
ble lookup failures, but the time overhead should still be a

representative upper bound.
Defining calling context. Ourimplementation distinguishes

probabilistic calling context (PCC). The methodology sub-
section first describedeterministiccalling context profiling,
which we use to measure the accuracy of PCC, and experi-
mental configurations, benchmarks, and platform. Then we

present the query points we evaluate, which correspond to

potential clients of PCC. Next we evaluate PCC's accuracy
at identifying new contexts at these query points, then mea-
sure PCC's time and space performance and compare it to
walking the stack. Finally we evaluate PCC's ability to ielen
tify new contexts not observed in a previous run and the
power of calling context to detect new program behavior not

between VM methods (defined in Jikes RVM classes), Java detectable with context-insensitive profiling.

library methods {ava.* classes), and application classes

(all other classes). The implementation does not consider

VM and library call sites to be part of calling context, since
call sites in these methods are probably not interestingto d
velopers and are often considered “black boxes.” All appli-
cation methods on the stack are considered part of thegallin
context, even if VM or library methods are above them. For
example, container classes often access applicationedefin
equals () andhashCode () methods:

at

at

at

at
at

result.Value.equals():164
java.util.LinkedList.indexOf () :406
java.util.LinkedList.contains():176
option.BenchOption.getFormalName () : 80
task.ManyTask.main() :46

Our implementation considers this context to be simply

at result.Value.equals():164
at option.BenchOption.getFormalName () :80
at task.ManyTask.main():46

Similarly, sometimes the application triggers the VM, whic
calls the application, such as for class initialization:

at dacapo.TestHarness.<clinit>():57

at com.ibm.JikesRVM.classloader.VM_Class.
initialize():1689

at com.ibm.JikesRVM.VM_Runtime.
initializeClassForDynamicLink() :545

at com.ibm.JikesRVM.classloader.
VM_TableBasedDynamicLinker.resolveMember () :65

at com.ibm.JikesRVM.classloader.
VM_TableBasedDynamicLinker.resolveMember () :54

at Harness.main():5

Our implementation considers this context to be

at dacapo.TestHarness.<clinit>():57
at Harness.main():5

5.1 Methodology

Deterministic calling context profiling. To evaluate the
accuracy of PCC and to collect other statistics, we also im-
plementdeterministiccalling context profiling. Our imple-
mentation constructs a calling context tree (CCT) and main-
tains the current position in the CCT throughout execution.
Our implementation is probably less time and space effi-
cient than the prior work (Section 6) because (1) it collects
per-node statistics during execution, and (2) for simplici
we modify only the non-optimizing baseline compiler and
disable the optimizing compiler for these experiments only
Since we only use it to collect statistics, we are not con-
cerned with its performance.

VM configurations. Jikes RVM runs by default using
adaptive methodology. Initially it uses a baseline non-
optimizing compiler. Then it dynamically identifies frequily-
executed methods and recompiles them at higher optimiza-
tion levels. Because Jikes RVM uses timer-based sampling
to detect hot methods, the adaptive compiler is nondetermin
istic. To measure performance, we usplay compilation
methodology, which is deterministic [22]. Replay compila-
tion forces Jikes RVM to compile the same methods in the
same order at the same point in execution on different execu-
tions and thus avoids high variability due to sample-driven
compilation.

Replay compilation usesdvice filegproduced by a previ-
ous well-performing adaptive run (best of five). The advice
files specify (1) the optimization level for compiling each
method, (2) the dynamic call graph profile, and (3) the edge
profile. Fixing these inputs, we execute two consecutive it-
erations of the application. During the first iteration,elik

RVM optimizes code using the advice files. The second it- libraries are heavily used by our benchmarks and other pro-
eration executes only the application with a realistic nfix o grams. At each call to gava.util.* method, instrumen-
unoptimized and optimized code. tation queries the PCC value.

We execute performance results using a generational
mark-sweep collector and a fixed heap size of three times
the minimum for each benchmark. We report the minimum
of five trials since it represents the deterministic runtleas
perturbed by external effects.

Java API calls. We also explore residual testing using the
JavaAPI libraries as a surrogate. This library is a superset
of java.util. We add instrumentation to query the PCC
value at each call to a method java.*. This simulates
residual testing of a larger component, since calljatoa . *
Benchmarks. We use the DaCapo benchmarks (version methods, especiallyava.lang.* methods, are extremely
2006-10), a fixed-workload version of SPEC JBB2000 frequentin most Java programs (e.g.,Salking operations
calledpseudojbb, and SPEC JVM98 [10, 43, 44]. We ex- are in the API libraries). The results for Java API calls
cludexalan from performance results because we could not show that PCC scales well to a frequently-used component
get it to run correctly with replay compilation, with or with invoked from many distinct contexts.

out PCC. We use tHargeinput size for all performance and
statistics runs, except we useediumfor eclipse’s statis-
tics runs since witHarge our deterministic calling context
implementation runs out of memoryclipse’s large input
executes at least 41 million distinct contexts.

All calls. In addition, we evaluate querying the PCC value
at every call site. This configuration would be useful for
measuring code coverage and generating tests with good
code coverage [9, 20, 39], and it represents an upper bound
on overhead for possible PCC clients. We find querying PCC
Platform. We perform experiments on a 3.6 GHz Pentium values at every call is too expensive for deployed use but can
4 with a 64-byte L1 and L2 cache line size, a 16KB 8- speed up testing time compared with walking the stack.

way set associative L1 data cache, a LBKs L1 instruction

trace cache, a 2MB unified 8-way set associative L2 on-chip 5.3 PCC Accuracy

cache, and 2 GB main memory, running Linux 2.6.12. Table 2 shows calling context statistics for the first three
)) potential clients from the previous sectiddynamicis the
5.2 Potential PCC Clients number of dynamic calls tguery For example, for sys-

PCC continuously keeps track of a probabilistically unique tem calls,Dynamicis the dynamic number of system calls.
value that represents the current dynamic calling confext. Distinctis the number of distinct calling contexts that occur
evaluate PCC’s use in several potential clients, we quary th at query pointsConf.is the number of PCC value conflicts
PCC value at various program points corresponding to thesethat occur for these calling contexts. Conflicts indicatewh
clients’ needs. PCC maps two or more distinct calling contexts to the same
value { contexts mapping to the same value count as1
conflicts). We summarize the dynamic and distinct counts
using geometric mean.

System calls. Anomaly-based security intrusion detection
typically collects sequences of system calls, and adding

context-sensitivity can strengthen detection (Sectiorm@) The benchmarks show a wide range of behavior with re-

explore this potential client, we add a call to PCQusery spect to system calls. Seven benchmarks perform more than

e e e e o v calosargy " 000G mamicsysem calls and o benchmarka 1x
y Y ption. 9 jython) exercise more than 1,000 distinct contexts at sys-

correspond to operations that can affect external staje, e.)
file svstem 1/O and network aceess. Our benchmarks ran etem calls. No PCC value conflicts occur between contexts.
) ystel ' 9€ As expected, the programs make significantly more calls
in behavior from very few to many system calls. Programs . o . .
o . into the utility libraries and the entire Java API. For the
most prone to security intrusions, such as web servers, are " . .
utility libraries, dynamiccalls range from about a thou-

likely to have many system calls. sand for several SPEC JVM98 benchmarks to a billion for
Java utility calls. Residual testing seeks to determine bloat, and the number of unique contexts ranges from 176
whether behavior seen at production time deviates from be-to 442,845. For the Java API, tldgnamiccalls are up to 2
havior seen at testing time [37, 47]. Residual testing of a billion for xalan, and distinct contexts range from 905 to
software component at production time detects if the com- 847,108. These potential clients will therefore requireyna
ponentis called from a new, untested context. These cantext PCC value queries, but as we show in the next section, PCC
may indicate errors in the application or poor test coverage is efficient even with this high load. The numerous zero
While application developers often perform residual tegti entries in the Conf. columns show that PCC is completely
on a component of their own application, we use the Java accurate in many cases. The conflicts are low—at most 79
utility libraries as a surrogate for exploring residual testing for pmd's 847,108 distinct contexts at API calls—and are
on a component library. These libraries provide function- consistent with the ideal values from Table 1.

ality such as container classes, time and date conversions, Table 3 presents calling context statisticsdtirexecuted
and random numbers. This choice is justified because thesecontexts, as well as average and maximum call depth. To

System calls Java utility calls Java API calls

Program Dynamic Distinct Conf. Dynamic Distinct Conf. Dynamic Distinct Conf.
antlr 211,490 1,567 0 698,810 8,010 0 24,422,013 128,627 3
bloat 12 10 0| 1,030,955,346 143,587 31,159,281,573 600,947 40
chart 63 62 0 43,345,653 44,502 0 258,891,525 202,603 4
eclipse 14,110 197 0 3,958,510 54,175 Q0 132,507,343 226,020 5
fop 18 17 0 5,737,083 25,528 a 9,918,275 37,710 0
hsqldb 12 12 0 90,324 267 0 81,161,541 16,050 0
jython 5,929 4,289 0 76,150,625 131,992 2 543,845,772 628,048 48
luindex 2,615 14 0 5,437,548 1,024 q 39,733,214 102,556 0
lusearch 141 11 0 23,183,861 176 g 113,511,311 905 0
pmd 1,045 25 0| 372,159,946 442,845 24 537,017,118 847,108 79
xalan 137,895 59 0| 744,311,518 6,896 0 2,105,838,670 17,905 0
DaCapo geo 843 60 19,667,815 12,689 163,072,787 85,963
pseudojbb 507,326 145 0 18,944,200 475 [0 30,340,974 3,410 0
compress 7 5 0 1,018 682 0 8,138 1,081 0
jess 50 6 0 4,851,299 2,061 q 16,487,052 5,240 0
raytrace 7 5 0 1,078 684 0 5,331,338 3,383 0
db 7 5 0 65,911,710 767 0 90,130,132 1,439 0
javac 7 5 0 6,499,455 55,994 a 24,677,625 255,334 4
mpegaudio 7 5 0 874 682 0 7,575,084 1,668 0
mtrt 7 5 0 880 682 0 5,573,455 3,366 0
jack 7 5 0 14,987,342 14,718 q 21,771,285 29,461 0
SPEC geo 30 7 199,386 1,724 7,074,200 5,410
Geomean | 188 23 | 2,491,316 5,168 | 39,734,213 24,764

Table 2. Statistics for calling contexts at several subsetsf call sites. Dynamic and distinct contexts, and PCC value
conflicts, for (1) system calls, (2) Java utility calls, aijl Java API calls.

All contexts Call depth
Program Dynamic Distinct Conf.| Avg Max
antlr 490,363,211 1,006,578 118215 164
bloat 6,276,446,059 1,980,205 45330.6 167
chart 908,459,469 845,432 91 16.6 29
eclipse 1,266,810,504 4,815,901 2,65215.0 102
fop 44,200,446 174,955 2224 49
hsgldb 877,680,667 110,795 1 19.3 36
jython 5,326,949,158 3,859,545 1,73858.3 223
luindex 740,053,104 374,201 12194 34
lusearch 1,439,034,336 6,039 D 15.2 24
pmd 2,726,876,957 8,043,096 7,68328.9 416
xalan 10,083,858,546 163,205 619.4 63
DaCapo geo| 1,321,327,982 562,992 22.3 78
pseudojbb 186,015,473 19,709 0 71 25
compress 451,867,672 1,518 0 13.6 17
jess 198,606,454 18,021 043.1 83
raytrace 557,951,542 21,047 0 6.7 18
db 91,794,359 2,118 Qg 13.0 18
javac 135,968,813 2,202,223 544295 122
mpegaudio 218,003,466 7,576 0219 26
mtrt 564,072,400 21,040 0 6.7 18
jack 35,879,204 82,514 1223 49
SPEC geo 200,039,740 20,695 14.8 32
Geomean | 565,012,654 127,324 | 18.6 52

Table 3. Statistics for every calling context executeddynamic and distinct contexts, PCC value conflicts, andayeand
maximum size (call depth) of dynamic contexts.

profile every context, we query calling context at every call times greater than the time spent in compilation, for each of
site, as well as every method prologue in order to captufe lea the PCC configurations shown in Figure 2.

calls. The table shows six programs execute over one million

- 4 pace overhead. Computing the PCC does not add space
distinct contexts and another five over one hundred thousand(?verhead to keep track of the PCC value, but of course the

contex.ts. The ""FSt two columns show that programs spen.d Aclients use space proportional to the number of PCC values
lot of time in fairly deep call chains: average call depth is

) : they store. Our experiments that test potential clientpkim
almost 20, and maximum call depth is over 100 for several | 't oy size hash table witR? — 1,048,576 slots (4

benchmarks. MB), as described in Section 4, but real clients would use

space proportional to their needs. Clients storing PCCegalu
5.4 PCC Performance in a large data structure could potentially hurt executiomet

This section evaluates PCC's run-time performance. We due to poor access locality.

evaluate PCC alone without a client and also measure the PCC also adds space overhead by increasing the size of

additional cost of using PCC with four sets of query points generated machine code. We find that on average, PCC in-

corresponding to potential clients (Section 3.4). These ex §trumentati0n adds 18% to code size. Adding.instrumenta-

periments report application time only using replay compi- tion to query the PCC value at system calls, utility calls) AP

lation, which produces a deterministic measurement. calls, and all calls adds an additional 0%, 2%, 6%, and 14%,
Figure 1 shows the run-time overhead of PCC, normal- respectively.

ized toBase which represents execution without any instru- - comparison with stack-walking. An alternative to PCC is
mentationPCCis the execution time of PCC alone: instru- to walk the stack at each query point (Section 6). We evaluate
mentation keeps track of the PCC value throughout execu-here how well stack-walking performs for the call sites cor-
tion but does not use it. The final four bars show the execu- responding to potential clients. We implement stack-waki
tion time of examining the PCC value at call sites correspond py simply calling a method that walks the entire stack at
to pOtentia| clients: SyStem Ca||S, Java ut|||ty Ca||S,a]atP| each query po|nt’ we do not add any PCC instrumentation
calls, and all calls. PCC actually improvesart’s perfor- for these runs. Stack-walking implementations would typi-
mance, but this anomaly is most likely because of architec- cally look up a unique identifier for the current context [36]
tural sensitivities due code modifications that may affeett and they could save time by walking only the subset of calls
trace cache and branch predictor. occurring since the last walk [49], but we do not model these
PCC by itself adds only 3% on average and 9% at most ¢gsts here.
(forhsqldb). Since system calls are relatively rare, checking Figure 3 shows the execution time overhead of walking
the context at each one adds negligible overhead on averagene stack at various points corresponding to three potentia
PCC value checking at Java utility and API calls adds 2% clients: system calls, Java utility calls, and Java APIscall
and 9% on average over PCC tracking, respectively, which is (e omit “all calls” because its overhead is greater than for
interesting given the high frequency of these calls (Table 2 jaya AP calls, which is very high). Since most benchmarks
The highest overhead is 47%, foroat’s API calls. have few dynamic system calls, stack-walking adds negligi-
ble overhead at these calls. However, for the two benchmarks
Compilation overhead. By adding instrumentation to ap- with more than 200,000 dynamic system cadist1r and
plication code, PCC increases compilation time. We mea- pseudojbb, stack-walking adds 67% and 62% overhead, re-
sure compilation overhead by measuring time spent in the spectively. These results show the substantial cost ofimglk
baseline and optimizing compilers during the first itenatio the stack even for something as infrequent as system calls.
of replay compilation. Figure 2 shows compilation time Applications prone to security attacks such as web servers
overhead. PCC instrumentation alone adds 18% compila-are likely to have many system calls.
tion overhead on average. Adding instrumentation to query . .
the PCC value increases compilation time by an additional ©-°> Comparing Calling Contexts Between Runs
0-31% for system, utility, and API calls, and up to 150% The previous sections demonstrate that PCC is an efficient
for all calls, although this overhead could be reduced by not mechanism for identifying new context-sensitive behavior
inlining the query method. Per-phase compiler timings show in a variety of potential clients. This section explores the
that most of the compilation overhead comes from com- sensitivity of calling context behavior to different pragn
piler phases downstream from PCC instrumentation, due toinputs by comparing calling context profiles between two
the bloated intermediate representation (IR). AlthougiCPC runs of each benchmark, ttegge andmediuninput sets. We
adds a greater percentage to compilation than applicationnote that while some benchmarks execute many new distinct
time, many adaptive optimizers control the fraction of time contexts with the large input not seen with medium (which
spent in compilation. Therefore by design, compilatiorgtim is not surprising since it is a larger workload by design), we
is a small fraction of overall execution time. In our exper- do not expect so much new behavior in production mode
iments, the time spent in the application is on average 20 on well-trained applications. Nonetheless, the resules ar

1.6
1.4—_ 0 Base
1.2 o PCC

o0 PCC + system calls
o PCC + util calls

B PCC + API calls

B PCC + all calls

Normalized application time
[
T

,
Nty Yoq, %, @% % g, /”‘/7 "//70@:%@ " S Zo'b /@6‘ U B Pra, "”/z B, 5% N
(&7} /éb G (/O}O 1 W

Figure 1. Application execution time overhead of maintainng the PCC value and querying it at (1) system calls, (2)
Java utility calls, (3) Java API calls, and (4) all calls.

20 2I.3 2.2 25

||
o 18
E I
- || Nl
K] t
= 0 Base
= _ o PCC
IS o PCC + system calls
3 o PCC + util calls
3 o PCC + API calls
N 8 PCC + all calls
<
£
S
z

Q”(‘/r /79 so/{o 2 /’s %% y, z/,,)% 0‘5‘@ '0/7’0 '%e 00/;, /ess r% % /QDQC 7, @0’77,}7 /QQ{— 0@0/))
6 /bb C@ QOO}(') @Q/]

Figure 2. Compilation time overhead due to adding instrumemation to maintain the PCC value and query it at (1)
system calls, (2) Java utility calls, (3) Java API calls, an¢4) all calls.

10.0

> 0 >10.0
3.1

1

0

(e
o
o
o

v
o=

0.

o

10.0 >10.0
0.0 >10.0

oo
o
\
o

o2
o

> >10.
>1 >10.0

[=\%A
O

>10.0 > >10. >
>10.0 7.1 >10.0 >10.0>10.

o
o
©

2.0
1.8
1.6-
1.4-
1.2
1.0-
0.8
0.6
0.4-]
0.2-]
0.0

O Base

O SW for system calls
@ SW for util calls

m SW for API calls

Normalized application time

Q 4, Sn,. Lp L C, Lo % o/ S /
2 o g P ‘?9%%/’0/; 0”’00:8 L Ss U, B g, " /)”/7 ¢
7 66 G (’O'
0

Figure 3. Application execution time overhead of walking tte stack at (1) system calls, (2) Java utility calls, and (3) Ja
API calls.

Relative increase of large input compared to medium input
Java utility calls Java API contexts

Program Dyn. New distinct Conf.| Dyn. New distinct Conf.
antlr 2.5x 0 (0.0%) 0| 2.5x 8 (0.0%) 0
bloat 11.8x 74,536 (51.9%) 3 10.2x 320,864 (53.4%) 33
chart 2.3x 31,419 (70.6%) 0 2.5x 139,599 (68.9%) 4
eclipse 4.2x 15,114 (27.9%) 0 5.8x 121,939 (54.0%) 4
fop 1.0x 0 (0.0%) 0| 1.0x 0 (0.0%) 0
hsgldb 6.0x 0 (0.0%) 0| 2.5x 13 (0.1%) 0
jython 7.5x 12,705 (9.6%) Q 7.3x 59,202 (9.4%) 5
luindex 1.0x 0 (0.0%) 0| 1.0x 7,398 (7.2%) 0
lusearch 2.0x 0 (0.0%) 0| 2.0x 0 (0.0%) 0
pmd 4.4x 368,862 (83.3%) 24 4.4x 711,223 (84.0%) 79
xalan 10.0x 0 (0.0%) 0| 10.0x 15 (0.1%) 0
Dacapo geg 3.5x 3.3x

compress 1.1x 0 (0.0%) 0| 2.2x 0 (0.0%) 0
jess 61.5x 530 (25.7%) 0 56.7x 1,827 (34.9%) 0
raytrace 1.0x 0 (0.0%) 0| 11.0x 25 (0.7%) 0
db 71.6x 25 (3.3%) 0| 61.4x 72 (5.0%) 0
javac 39.9x 36,419 (65.0%) 0 36.9x 163,916 (64.2%) 6
mpegaudio | 1.0x 0 (0.0%) 0| 10.9x 32 (1.9%) 0
mtrt 1.0x 0 (0.0%) 0| 7.7x 25 (0.7%) 0
jack 8.5x 0 (0.0%) 0| 8.5x 0 (0.0%) 0
SPEC geo 6.0x 14.7x

Geomean | 4.4x | 6.2x

Table 4. Comparing calling contexts at API calls between lage and medium inputs. *Medium vs. small for eclipse.

interesting because they give an indication of how calling and PCC values for these new calling contexts have 79 con-
context behavior differs from one run to the next and how flicts when added to the PCC values from the medium run, so
well PCC identifies new context-sensitive behavior. the probability of a particular new calling context not kgein
Table 4 compares the calling contexts at Java utility and identified as new is about 1 in 10,000. Eleven of the pro-
Java API calls for runs with the medium and large inputs. We grams execute few if any new distinct calling contexts, even
do not show data for system calls since they vary very little if they execute many times more dynamic calls to Java utility
between medium and large inputs: only five benchmarks ex- and API methods, while five benchmarks execute hundreds
ecute new calling contexts at system calasrt executes of thousands of new distinct calling contexts. The programs
the most, 38). We omipseudojbb since it has only one generate about 1 conflict for every 10,000 new contexts at
input size. We use small and medium fetlipse (Sec- worst, which should be a reasonable false negative rate for
tion 5.1). most clients.
In the tableDyn.is the factor increase of dynamic calling
contexts in the large run vs. the medium run. All DaCapo
programs excepfop and luindex exercise substantially 5.6 Evaluating Context Sensitivity

more dynamic calls to the utility libraries and to the whole This section compares calling context profilingdall site
Java API.New distinctis the number of new distinct calling profiling, which is contexinsensitive to evaluate whether
contexts occurring in the large but not in the medium run, calling context detects significantly more previously unob
and the percentage is the value relative to all distinct call served behavior than call sites alone. Table 5 compares call
ing contexts from the large ru@ontf.is the number of PCC g contexts and call sites. The first two columns are counts
value conflicts that occur when adding the new PCC values of distinct calling contexts and call sites for calls to Java
seen only in the large run, to the set of PCC values seen inap| methods (the calling context figures are the same as in
the medium run. For examplend executes more than four Taple 2). For most programs, there are many more calling
times as many dynamic Java AP calls in the large as in the contexts than call sites, which indicates that call sitesiar
medium run, and 711,223 distinct contexts occur in the large yoked from multiple calling contexts. The first two columns

run that were not observed in the medium run. These con-gshow that thousands of call sites generate hundreds of thou-
texts account for 84% of the large run’s distinct contexts; sands of calling contexts.

Large input Large-medium diff | Contexts w/ new
Program Contexts Call siteg Contexts Call siteg call sites
antlr 128,627 4,184 8 0 0
bloat 600,947 3,306 320,864 82 1,002
chart 202,603 2,335 139,599 379 9,112
eclipse¢ 226,020 9,611 121,939 1,240 46,206
fop 37,710 2,225 0 0 0
hsqldb 16,050 947 13 0 0
jython 628,048 1,830 59,202 1 1
luindex 102,556 654 7,398 0 0
lusearch 905 507 0 0 0
pmd 847,108 1,890 711,223 48 388
xalan 17,905 1,530 15 2 2
Dacapogeg 85,963 1,897
pseudojbb 3,410 846 17 0 0
compress 1,081 1,017 0 0 0
jess 5,240 1,363 1,827 22 22
raytrace 3,383 1,215 25 2 5
db 1,439 1,105 72 4 4
javac 255,334 1,610 163,916 9 201
mpegaudio 1,668 1,072 32 1 4
mtrt 3,366 1,190 25 2 5
jack 29,461 2,173 0 0 0
SPEC geo 5,410 1,242
Geomean | 24,764 1,568 |

Table 5. Comparing call site profiles with calling context onJava API calls. *Medium vs. small inputs for eclipse.

Finally, we consider the power of residual calling con-
text profiling compared to residual call site profiling on

the medium versus the large inputs. Columns urdege-

medium diffcount the distinct calling contexts and call sites
seen in a large run but not a medium run. In several pro-
grams many new distinct calling contexts occur, but many
fewer new call sites occur, aridiindex in particular ex-

up the corresponding calling context identifier in a call-
ing context tree (CCT) [36, 41]. Unfortunately, walking the

stack more than very infrequently is too expensive for pro-
duction environments, as shown in Section 5.4.

Calling context tree. An alternative approach to walking
the stack is to build a dynamic calling context tree (CCT)

ecutes 7,398 new contexts without executing any new call where each node in the CCT is a context, and during execu-

sites. The final column shows the number of new, distinct
calling contexts that correspond to the new call sites in the
large run. This column shows how well residual call site
profiling would do at identifying new calling context be-
havior. If every new call site (i.e., call site seen in large: b
not medium run) triggered stack-walking, call site profilin
would identify only a small fraction of the new calling con-

texts for most programs.

6. Related Work

This section discusses related work in calling context pro-
filing. It first considers stack-walking, then heavyweigpt a

proaches that construct a calling context tree (CCT), and fi-
nally sampling-based approaches. We also consider related®

forms of profiling.

Walking the stack. One approach for identifying the cur-

tion maintain the current position in the CCT [2, 42]. This
instrumentation slows C programs down by a factor of 2 to
4. The larger number of contexts in Java programs and the
compile-time uncertainty of virtual dispatch further inase
CCT time and space overheads. The size of CCT nodes are
100 to 500 bytes in previous work, whereas PCC values are
very compact in comparison, since each one only needs 32
or 64 bits, and storing them in a half-full hash table achéeve
good run-time performance, as shown in Section 5.4.

Sampling-based approaches Sampling-based and trunca-
tion approaches keep overhead low by identifying the call-
ing context infrequently [8, 15, 21, 49, 52]. Clients use
hot context information for optimizations such as context-
ensitive inlining [21] and context-sensitive allocatites

for better object lifetime prediction and region-baseded-
tion [25, 40]. Hazelwood and Grove sample the stack peri-
odically to collect contexts to drive context-sensitivérin

rent calling context is to walk the program stack, then look ing [21]. Zhuang et al. improve on sampling-based stack-

walking by performingbursty profiling after walking the captureintraproceduralcontrol flow while calling context
stack, since it is relatively cheap to update the currenit pos providesinterproceduralcontrol flow. One could imagine
tion in the CCT on each call and return for a short time [52]. combining PCC and path profiling for best-of-both-worlds
Bernat and Miller limit profiling to a subset of methods [8]. approaches in residual testing, anomaly-based bug datecti
Froyd et al. use unmodified binaries and achieve extremelyand intrusion detection.
low overhead through stack sampling [15]. Sampling is use-
ful for identifying hot calling contexts, but it is not suiike 7. Conclusion
for clients such as testing, security, and debugging becaus
sampling sacrifices coverage, which is key for these clients
Although PCC primarily targets clients requiring high
coverage, it could potentially improve the accuracy-oeerh
trade-off of sampling-based approaches. Zhuang et all's ca
ing context profiling approach avoids performing bursty
sampling at already-sampled calling contexts [52]. Cutyen
they walk the stack to determine if the current context has
been sampled before, but instead they could use PCC to
quickly determine, with high probability, if they have al-
ready sampled a calling context.

Complex object-oriented programs motivate calling contex
as a program behavior indicator in residual testing, angmal
based bug detection, and security intrusion detectiowiPre
ous techniques are too expensive for use in production envi-
ronments. We present a probabilistic calling context (PCC)
approach suited to detecting new behavior that is efficient
enough to use in deployed systems. PCC maintains a value
representing the current calling context in a probabdaty
unigue value. PCC adds just 3% overhead on average to a
Java VM. Querying the PCC value at points corresponding
to testing and security clients adds 0 to 9% additional over-
Dynamic call graph profiling. Dynamic optimizers of- head, and querying at every call adds 49%, while missing
ten profile call edges to construct a dynamic call graph relatively few new contexts due to conflicts (0.1% at worst).
(DCG) [5, 29, 38, 45], which informs optimizations such These results show that PCC is efficient and accurate enough
as inlining. DCGs lack context sensitivity and thus provide to add context sensitivity to dynamic analyses that detect
less information than calling context profiles. new or anomalous program behavior.

Path profiling. Ball-Larus path profiling computes a unique

number through each possible path in the control flow Acknowledgments

graph [7]. An intriguing idea is applying path profiling in- Many thanks to Vitaly Shmatikov for feedback and advice

strumentation to the dynamic call graph and computing a regarding security applications. Thanks to Samuel Guyer,
unigue number for each possible context. However, this Jungwoo Ha, Nicholas Nethercote, Ben Wiedermann, and
approach is problematic because call graphs, which haveEmmett Witchel for helpful discussions. Thanks to Jungwoo
thousands of nodes for our benchmarks, are typically muchHa, Calvin Lin, Ben Wiedermann, and the anonymous re-
larger than control flow graphs (CFGs). The number of pos- viewers for valuable feedback on the paper.

sible paths both through CFGs and call graphs is exponential

in the size of the graph in practice, so the statically pdssib References

contexts cannot be assigned unique 32- or even 64-bit val- [1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,

ues. Other challenges include: (1) recursion leads to@ycli P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
graphs; (2) dynamic class loading modifies the graph at run M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. Mergen,
time; and (3) virtual dispatch obscures call targets and-com T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. Shepherd,
plicates call edge instrumentation. Wiedermann computes S. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The
a unique number per context at run time by applying Ball- Jalapefio Virtual MachindBM Systems JournaB9(1):211-
Larus path numbering to the call graph, but does not evalu- 238, 2000.

ate whether large programs can be numbered uniquely [S0]. [2] G. Ammons, T. Ball, and J. R. Larus. Exploiting Hardware
His approach uses C programs, avoiding the challenges of Performance Counters with Flow and Context Sensitive

dynamic class loading and virtual dispatch, and handles re- Profiling. In ACM Conference on Programming Language
cursion by collapsing strongly-connected componentsén th Design and Implementatiopages 85-96, Las Vegas, NV,
call graph. Melski and Reps presenterprocedural path 1997.

profiling that captures both inter- and intraprocedural con- [3] T. Apiwattanapong and M. J. Harrold. Selective Path
trol flow, but their approach does not scale because it adds Profiling. In ACM Workshop on Program Analysis for
complex call edge instrumentation, and there are too many Software Tools and Engineeringages 35-42, 2002.

statically possible paths for nontrivial programs [33]. [4] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney.
As Section 2 points out, much prior work uses path pro- Adaptive Optimization in the Jalapefio JVM. KCM
filing to understand dynamic behavior in testing, debugging Conference on Object-Oriented Programming, Systems,

and security, but dynamic object-oriented languages need Languages, and Applicationpages 47-65, 2000.

calling context, too, since it captures important behavior [5] M. Arnold, M. Hind, and B. G. Ryder. An Empirical Study
Paths and calling contexts are largely orthogonal sindespat of Selective Optimization. Ininternational Workshop on

Languages and Compilers for Parallel Computimzages
49-67, London, UK, 2001. Springer-Verlag.

[6] T. Ball. The SLAM Toolkit: Debugging System Software via
Static Analysis, 2001.

[7] T. Balland J. R. Larus. Efficient Path Profiling. IBEE/ACM
International Symposium on Microarchitectupages 46-57,
1996.

[8] A. R. Bernat and B. P. Miller. Incremental Call-Path Pliafj.
Concurrency and Computation: Practice and Experience
2006.

[9] D. Binkley. Semantics Guided Regression Test Cost
Reduction. IEEE Transactions on Software Engineering
23(8):498-516, 1997.

[10] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanovic, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo Benchmarks:
Java Benchmarking Development and Analysis. AbM
Conference on Object-Oriented Programming, Systems,
Languages, and Applicationpages 169-190, 2006.

[11] A. Chakrabarti and P. Godefroid. Software Partiti@nin
for Effective Automated Unit Testing. IACM & IEEE
International Conference on Embedded Softwpeges 262—
271, 2006.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithmschapter 11. The MIT Press,
McGraw-Hill Book Company, 2nd edition, 2001.

L. Fei and S. P. Midkiff. Artemis: Practical Runtime
Monitoring of Applications for Execution Anomalies. In
ACM Conference on Programming Language Design and
Implementationpages 84-95, 2006.

H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and
W. Gong. Anomaly Detection Using Call Stack Information.
In IEEE Symposium on Security and Privapgge 62. IEEE
Computer Society, 2003.

N. Froyd, J. Mellor-Crummey, and R. Fowler. Low-Ovealde
Call Path Profiling of Unmodified, Optimized Code. ACM
International Conference on Supercomputipgges 8190,
2005.

P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
Automated Random Testing. IACM Conference on
Programming Language Design and Implementatjpsges
213-223, 2005.

[17] W. Gropp. Runtime Checking of Datatype Signatures in MP
In European PVM/MPI Users’ Group Meeting on Recent
Advances in Parallel Virtual Machine and Message Passing
Interface pages 160-167, London, UK, 2000. Springer-
Verlag.

[18] J. Ha, C. J. Rossbach, J. V. Davis, I. Roy, H. E. Ramadan,
D. E. Porter, D. L. Chen, and E. Witchel. Improved Error
Reporting for Software that Uses Black Box Components.
In ACM Conference on Programming Language Design and
Implementationpages 101-111, 2007.

[13]

[14]

[15]

[16]

[19] S. Hangal and M. S. Lam. Tracking Down Software Bugs
Using Automatic Anomaly Detection. IACM International
Conference on Software Engineerjpgges 291-301, 2002.

[20] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi.
An Empirical Investigation of the Relationship Between
Spectra Differences and Regression Fa8isftware Testing,
Verification & Reliability, 10(3):171-194, 2000.

[21] K. Hazelwood and D. Grove. Adaptive Online Context-
Sensitive Inlining. INIEEE/ACM International Symposium
on Code Generation and Optimizatigrages 253-264, 2003.

[22] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss,
Z.Wang, and P. Cheng. The Garbage Collection Advantage:
Improving Program Locality. IPACM Conference on
Object-Oriented Programming, Systems, Languages, and
Applications pages 6980, 2004.

[23] H. Inoue. Anomaly Detection in Dynamic Execution
EnvironmentsPhD thesis, University of New Mexico, 2005.

[24] H. Inoue and S. Forrest. Anomaly Intrusion Detection in
Dynamic Execution Environments. Morkshop on New
Security Paradigmgpages 52-60, 2002.

[25] H. Inoue, D. Stefanovit, and S. Forrest. On the Pragfict
of Java Object Liftimes.ACM Transactions on Computer
Systemsb5(7):880-892, 2006.

[26] Jikes RVM. http://www.jikesrvm.org.

[27] Jikes RVM Research Archive. http://www.jikesrvm.brg
Research+Archive.

[28] J. Langou, G. Bosilca, G. Fagg, and J. Dongarra. Hash
Functions for Datatype Signatures in MPI. Huropean
Parallel Virtual Machine and Message Passing Interface
Conferencepages 76—83, 2005.

[29] B. Lee, K. Resnick, M. D. Bond, and K. S. McKinley.
Correcting the Dynamic Call Graph Using Control Flow
Constraints. Ininternational Conference on Compiler
Construction 2007.

[30] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan
Scalable Statistical Bug Isolation. WCM Conference on
Programming Language Design and Implementatjpsges
15-26, 2005.

[31] C. Liu, X. Yan, H. Yu, J. Han, and P. S. Yu. Mining
Behavior Graphs for Backtrace of Noncrashing Bugs. In
SIAM International Converence on Data Miningages 286—
297, 2005.

[32] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting
Atomicity Violations via Access-Interleaving Invarianttn
ACM International Conference on Architectural Support for
Programming Languages and Operating Systgmages 37—
48, 2006.

[33] D. Melski and T. Reps. Interprocedural Path Profiling. |
International Conference on Compiler Constructigages
47-62, 1999.

[34] M. Mitzenmacher and E. UpfaProbability and Computing:
Randomized Algorithms and Probabilistic AnalysiSam-
bridge University Press, New York, NY, USA, 2005.

[35] G. J. Myers.The Art of Software TestingViley, 1979.

[36] N. Nethercote and J. Seward. Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation. In
ACM Conference on Programming Language Design and
Implementationpages 89-100, 2007.

[37] C. Pavlopoulou and M. Young. Residual test coverage
montoring. INACM International Conference on Software
Engineering pages 277-284, May 1999.

[38] F. Qian and L. Hendren. Towards Dynamic Interprocedura
Analysis in JVMs. InUSENIX Symposium on Virtual
Machine Research and Technologgages 139-150, 2004.

[39] A. Rountev, S. Kagan, and J. Sawin. Coverage Criteria fo
Testing of Object Interactions in Sequence Diagrams. In
Fundamental Approaches to Software EngineeridyCS
3442, pages 282—-297, 2005.

[40] M. L. Seidl and B. G. Zorn. Segregating Heap Objects by
Reference Behavior and Lifetime. WCM International
Conference on Architectural Support for Programming
Languages and Operating Systempages 12—-23, 1998.

[41] J. Seward and N. Nethercote. Using Valgrind to Detect
Undefined Value Errors with Bit-Precision. WSENIX
Annual Technical Conferencpages 17-30, 2005.

[42] J. M. Spivey. Fast, Accurate Call Graph Profilin§oftw.
Pract. Exper, 34(3):249-264, 2004.

[43] Standard Performance Evaluation CorporatiSRECjvm98
Documentationrelease 1.03 edition, 1999.

[44] Standard Performance Evaluation Corporat®RECjbb2000
Documentationrelease 1.01 edition, 2001.

[45] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and

T. Nakatani. A Dynamic Optimization Framework for

a Java Just-in-Time Compiler. IACM Conference on
Object-Oriented Programming, Systems, Languages, and
Applications pages 180-195, 2001.

[46] TIOBE Software. TIOBE programming community index,
2007. http://tiobe.com.tpci.html.

[47] K. Vaswani, A. V. Nori, and T. M. Chilimbi. Preferentilath
Profiling: Compactly Numbering Interesting Paths.AGM
Symposium on Principles of Programming Languagesgies
351-362, 2007.

[48] D. Wagner and P. Soto. Mimicry Attacks on Host-Based
Intrusion Detection Systems. IACM Conference on
Computer and Communications Securipages 255-264.
ACM Press, 2002.

[49] J. Whaley. A Portable Sampling-Based Profiler for Java
Virtual Machines. InACM Conference on Java Grande
pages 78-87. ACM Press, 2000.

[50] B. Wiedermann. Know your Place: Selectively Executing
Statements Based on Context. Technical Report TR-07-38,
University of Texas at Austin, 2007.

[51] T. Zhang, X. Zhuang, S. Pande, and W. Lee. Anomalous
Path Detection with Hardware Support. limternational
Conference on Compilers, Architectures and Synthesis for
Embedded Systenpages 43-54, 2005.

[52] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi.
Accurate, Efficient, and Adaptive Calling Context Profiling

In ACM Conference on Programming Language Design and
Implementationpages 263-271, 2006.

