
Probabilistic Calling Context ∗

Michael D. Bond Kathryn S. McKinley

Department of Computer Sciences
The University of Texas at Austin

{mikebond,mckinley}@cs.utexas.edu

Abstract
Calling contextenhances program understanding and dy-
namic analyses by providing a rich representation of pro-
gram location. Compared to imperative programs, object-
oriented programs use more interprocedural and less in-
traprocedural control flow, increasing the importance of con-
text sensitivity for analysis. However, prior online meth-
ods for computing calling context, such as stack-walking or
maintaining the current location in a calling context tree,are
expensive in time and space. This paper introduces a new on-
line approach calledprobabilistic calling context(PCC) that
continuously maintains a probabilistically unique value rep-
resenting the current calling context. For millions of unique
contexts, a 32-bit PCC value has few conflicts. Computing
the PCC value adds 3% average overhead to a Java virtual
machine. PCC is well-suited to clients that detect new or
anomalous behavior since PCC values from training and pro-
duction runs can be compared easily to detect new context-
sensitive behavior; clients that query the PCC value at ev-
ery system call, Java utility call, and Java API call add 0-9%
overhead on average. PCC adds space overhead proportional
to the distinct contexts stored by the client (one word per
context). Our results indicate PCC is efficient and accurate
enough to use in deployed software for residual testing, bug
detection, and intrusion detection.

Categories and Subject DescriptorsD.2.5 [Software Engi-
neering]: Testing and Debugging—Monitors, Testing tools

General Terms Reliability, Security, Performance, Exper-
imentation

∗This work is supported by an Intel fellowship, NSF CCF-0429859,
NSF CCR-0311829, NSF EIA-0303609, DARPA F33615-03-C-4106, In-
tel, IBM, and Microsoft. Any opinions, findings and conclusions expressed
herein are the authors’ and do not necessarily reflect those of the sponsors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-786-5/07/0010. . . $5.00

Keywords Calling Context, Dynamic Context Sensitivity,
Probabilistic, Residual Testing, Anomaly-Based Bug Detec-
tion, Intrusion Detection, Managed Languages

1. Introduction
Several trends are making it harder for developers to under-
stand, test, debug, and optimize applications. Due to feature
demand, one trend is that applications are larger, more com-
plicated, and often combine modules from disparate sources.
Another trend is that more software is written in managed
languages, such as Java and C# [46]. Development prac-
tices in these languages divide functionality into small meth-
ods and thus express context as interprocedural control flow
rather than intraprocedural control flow. Together the conse-
quences of these trends are that (1) programmers have more
difficulty understanding an entire application, (2) exhaustive
testing is infeasible and even attaining high testing coverage
is challenging, and (3) static analyses are less effective.

As a result, developers are turning to dynamic tools to
understand, test, and optimize their programs.Dynamic
calling context is the sequence of active method invoca-
tions that lead to a program location. Previous work in
testing [9, 11, 16, 20, 35, 39], debugging and error report-
ing [18, 31, 36, 41], and security [14, 23] demonstrates its
utility. Calling context is powerful because it captures in-
terprocedural behavior and yet is easy for programmers to
understand. For example, programmers frequently exam-
ine calling context, in the form of error stack traces, during
debugging. Untested behavior such as unexercised calling
contexts are calledresiduals[37]. If residual calling con-
texts are observed in deployed software, they are clues to
unmet test coverage obligations and potential bugs. Anoma-
lous sequences of calling contexts at system calls can reveal
security vulnerabilities [14, 23].

Computing calling context cheaply is a challenge in non-
object-oriented languages such as C, and it is even more
challenging in object-oriented languages. Compared with C
programs, Java programs exacerbate this problem because
they generally express more control flow interprocedurally
in the call graph, rather than intraprocedurally in the control
flow graph. Our results show that Java has more distinct
contexts than comparable C programs [2, 42]. For example,



large C programs such as GCC and 147.vortex have 57,777
and 257,710 distinct calling contexts respectively [2, 42],
but the remaining six SPEC CPU C programs in Ammons
et al.’s workload have fewer than 5,000 contexts. In contrast,
we find that 5 of 11 DaCapo Java benchmarks [10] contain
more than 1,000,000 distinct calling contexts, and 5 others
contain more than 100,000 (Section 5).

The simplest method for capturing the current calling
context is walking the stack. For example, Valgrind walks
the stack at each memory allocation to record its context-
sensitive program location, and reports this information in
the event of a bug [36, 41]. If the client of calling contexts
very rarely needs to know the context, then the high over-
head of stack-walking is easily tolerated. An alternative to
walking the stack is to build a calling context tree (CCT) dy-
namically and to track continuously the program’s position
in the CCT [2, 42]. Unfortunately, tracking the program’s
current position in a CCT adds a factor of 2 to 4 to pro-
gram runtimes. These overheads are unacceptable for most
deployed systems. Recent work samples hot calling contexts
to reduce overhead for optimizations [52]. However, sam-
pling is not appropriate for testing, debugging, or checking
security violations since these applications need coverage of
both hot and cold contexts.

This paper introduces an approach calledprobabilistic
calling context(PCC) that continuously maintains a value
that represents the current calling context with very low
overhead. PCC computes this value by evaluating a func-
tion at each call site. To differentiate calling contexts that
include the same methods in a different order, we require a
function that is non-commutative. To optimize a sequence
of inlined method calls into a single operation, we prefer a
function whose composition is cheap to compute. We show
the computationV ← 3×V +cshas these properties, where
V is the current value of the calling context, andcs is a hash
value for the current call site. We show in theory and practice
that this function produces a unique value for up to millions
of contexts with relatively few conflicts (false negatives). If
necessary, a 64-bit PCC value can probabilistically differen-
tiate billions of unique calling contexts.

PCC is well suited to adding context sensitivity to dy-
namic analyses that detect new or anomalous program be-
havior such as coverage testing, residual testing, anomaly-
based bug detection, and intrusion detection. These clients
naturally have atraining phase, which collects program be-
havior, and aproductionphase, which compares behavior
against training behavior. Calling contexts across runs can
be compared easily by comparing PCC values: two different
PCC values definitely represent different contexts. Although
a new PCC value indicates a new context, the context is not
determinable from the value, so PCC walks the stack when it
encounters anomalous behavior to report the calling context.

Using Jikes RVM [1, 26], we demonstrate on the DaCapo
Benchmarks, SPEC JBB2000, and SPEC JVM98 that con-

tinuously computing a 32-bit PCC value adds on average 3%
overhead. Clients add additional overhead to query the PCC
value at client-specific program points. We approximate the
overhead of querying the PCC value by looking up the value
in a hash table on each query. Querying at every call in the
application increases execution times by an average of 49%
and thus is probably only practical at testing time. In sev-
eral interesting production scenarios, we demonstrate that
querying the PCC value frequently is feasible: querying at
every system call adds no measurable overhead, at every
java.util call adds 3% overhead; and examining it at ev-
ery Java API call adds 9% overhead. Computing the PCC
value adds no space overhead, but clients add space over-
head proportional to the number of distinct contexts they
store (one word per context), which is millions in some cases
but still much smaller than all statically possible contexts.
In contrast, other approaches use space proportional to all
contexts and/or use many words per context. To our knowl-
edge, PCC is the first approach to achieve low-overhead and
always-available calling context. We believe this functional-
ity can enable new online client analyses that improve pro-
gram correctness, reliability, and security.

2. Motivation
This section motivates efficient tracking of calling context
for improving testing, debugging, and security. Some pre-
vious work shows dynamic context sensitivity helps these
tasks [9, 14, 31, 23]. However, most prior work uses in-
traprocedural paths or no control-flow sensitivity for these
tasks [3, 18, 20, 24, 47, 48] since paths are often good
enough for capturing program behavior and calling context
is too expensive to compute. Because developers more of-
ten now choose object-oriented, managed languages such
as Java and C# [46], calling context is growing in impor-
tance for these tasks. In essence, Java programs use more
method invocations (i.e., interprocedural control flow) and
fewer control flow paths (i.e., intraprocedural control flow)
compared with C programs. This paper seeks to help enable
the switch to dynamic context-sensitivity analyses by mak-
ing them efficient enough for deployed systems.

Testing. Half of application development time is spent in
testing [6, 35]. A key part of testing is coverage, and one
metric of coverage is exercising unique statements, paths,
calling contexts [9], and calling sequences that include the
order of calls and returns [20, 39].Residual testingidentifies
untested coverage, such as paths, that occur at production
time but were not observed during testing [37, 47]. PCC
is well-suited to context-sensitive residual testing since it
identifies new contexts with high probability while adding
low enough overhead for deployed software.

Debugging. Identifying program behavior correlated with
incorrect execution often helps programmers find bugs. Pre-
vious work in anomaly-based bug detection(also called



invariant-based bug detectionandstatistical bug isolation)
tracks program behavior such as variables’ values across
multiple runs to identify behavior that is well-correlated
with errors [19, 30, 32]. We are not aware of work that uses
calling context for anomaly-based bug detection, although
the high time and space overhead may be a factor. Some
previous work uses a limited amount of calling context in
features in bug detection. Liu et al. usebehavior graphs,
which include call relationships (essentially one level ofcon-
text sensitivity), to help identify call chains correlatedwith
bugs [31].Clarify usescall-tree profiling, which measures
two levels of context sensitivity as well as the order of calls,
to classify program executions for better error reporting,a
task similar to bug-finding [18]. We note that programmers
already appreciate the usefulness of calling context in debug-
ging tasks. For example, developers typically start with an
error stack trace to diagnose a crash andValgrind, a testing-
time tool, reports context-sensitive allocation sites forheap
blocks involved in errors [36].

Artemisprovides a framework for selectively sampling
bug detection instrumentation to keep overhead low [13].
The key idea is to track contexts and to avoid sampling con-
texts that have already been sampled. Artemis’s definition of
context includes values of local and global variables but does
not include calling context, possibly because of the cost of
computing it. PCC makes it viable to add calling context to
Artemis.

Security. Anomaly-based intrusion detectionseeks to de-
tect new attacks by identifying anomalous (i.e., previously
unseen) program behavior [14, 24, 48]. Existing approaches
typically keep track of system calls and flag system call se-
quences that deviate from previously-observed behavior and
may indicate an attacker has hijacked the application. Wag-
ner and Soto show that attackers can circumvent these ap-
proaches bymimickingnormal application behavior while
still accomplishing attacks [48]. Adding context sensitivity
to the model of acceptable behavior constrains what attack-
ers can do without getting caught, and recent work on in-
trusion detection uses calling context to identify program
control-flow hijacking [14, 23, 51]. Inoue on page 109 in
his dissertation writes the following [23]:

Adding context by increasing the number of observed stack
frames can make some attacks significantly more difficult.
So-called “mimicry” attacks take advantage of the inner
workings of applications to attack while still behaving simi-
larly to the attacked application. Adding context makes this
more difficult because it restricts the attacker to using only
methods usually invoked from within the enclosing method
that the exploit attacks, instead of any method invoked by
the entire application.

Zhang et al. show that k-length interprocedural paths gath-
ered with hardware reveal possible security violations [51].
Feng et al. utilize a single level of context sensitivity by in-

cluding each system call’s return address in the sequence of
system calls, constraining possible attacks [14].

We show that the expense of walking the stack stands in
the way of deployed use of context-sensitive system calls
but that PCC permits cheap computation of context sensi-
tivity (Section 5). An intrusion detection system could use
PCC to record the calling context for each system call in
sequences of system calls. Because PCC is probabilistic, it
may incur false negatives if it misses anomalous calling con-
texts that map to the same value as an already-seen calling
context. However, the conflict rate is very low, 0.1% or less
for up to 10 million contexts with 32-bit values, and 64-bit
values provide even fewer conflicts. A determined attacker
with knowledge of PCC could potentially engineer an at-
tack using an anomalous calling context with a conflicting
PCC value. We believe randomizing call site values on the
host would make a “conflict attack” virtually impossible, al-
though we do not prove it.

In summary, existing work shows dynamic calling con-
text is useful for residual testing, anomaly-based bug detec-
tion, and intrusion detection. Trends toward managed lan-
guages and more complex applications are likely to make
dynamic context sensitivity more essential, and PCC has the
potential to help make it feasible.

3. Probabilistic Calling Context
This section describes our approach for efficiently comput-
ing a value that represents the current calling context and is
unique with high probability.

3.1 Calling Context

The current program location (method and line number) and
the active call sites on the stack define dynamic calling con-
text. For example, the first line below is the current program
location, and the remaining lines are the active call sites:

at com.mckoi.database.jdbcserver.JDBCDatabaseInterface.

execQuery():213

at com.mckoi.database.jdbc.MConnection.

executeQuery():348

at com.mckoi.database.jdbc.MStatement.

executeQuery():110

at com.mckoi.database.jdbc.MStatement.

executeQuery():127

at Test.main():48

3.2 Probabilistic Approach

Probabilistic calling context (PCC) keeps track of an integer
value,V , that represents the current calling context. Our goal
is to compute random, independent values for each context.
To determine the feasibility of this approach, we assume a
random number generator and use the following formula to
determine the number of expected conflicts given population
sizen and 32- or 64-bit values [34]:



Random Expected conflicts
values 32-bit values 64-bit values
1,000 0 (0.0%) 0 (0.0%)

10,000 0 (0.0%) 0 (0.0%)
100,000 1 (0.0%) 0 (0.0%)

1,000,000 116 (0.0%) 0 (0.0%)
10,000,000 11,632 (0.1%) 0 (0.0%)

100,000,000 1,155,170 (1.2%) 0 (0.0%)
1,000,000,000 107,882,641 (10.8%) 0 (0.0%)

10,000,000,000 6,123,623,065 (61.2%) 3 (0.0%)

Table 1. Expected conflicts for various populations of ran-
dom numbers using 32-bit and 64-bit values.

E[conflicts] := n−m + m

(

m− 1

m

)n

wherem is the size of the value range (e.g.,m = 232 for
32-bit values). Table 1 shows the expected number of con-
flicts for populations ranging in size from one thousand to
ten billion. For example, if we choose 10 million random
32-bit numbers, we can expect 11,632 conflicts on average.
Applied to the calling context problem, if a program exe-
cutes 10 million distinct calling contexts, we expect to miss
contexts at a rate of just over over 0.1%, which is likely good
enough for many clients.

The programs we evaluate execute fewer than 10 million
distinct calling contexts (excepteclipse with the large
input; Section 5.1). For programs with many more distinct
calling contexts, or for clients that need greater probability
guarantees, 64-bit values should suffice. For example, one
can expect only a handful of conflicts for as many as 10
billion distinct calling contexts.

3.3 Computing Calling Context Values

The previous section shows that assigning randomly-chosen
PCC values results in an acceptably small level of conflicts
(i.e., distinct calling contexts with the same value). This
section introduces an online approach for computing a PCC
value that has the following properties:

• PCC values must be distributed roughly randomly so that
the number of value conflicts is close to the ideal.

• The PCC value must be deterministic, i.e., a given calling
context always computes the same value.

• Computing the next PCC value from the current PCC
value must be efficient.

We use a function

f(V, cs)

whereV is the current calling context value andcsis the call
site at which the function is evaluated. We add instrumenta-
tion that computes the new value ofV at each call site by
applyingf as follows:

method() {

int temp = V; // ADDED: load PCC value

...

V = f(temp, cs_1); // ADDED: compute new value

cs_1: calleeA(...); // call site 1

...

V = f(temp, cs_2); // ADDED: compute new value

cs_2: calleeB(...); // call site 2

...

}

We have two requirements for this function: non-commutativity
and efficient composability.

Non-commutativity. We have found that our benchmarks
contain many distinct calling contexts that differ only in
the order of call sites. For example, we want to differenti-
ate calling context ABC from CAB. We therefore require
a function that isnon-commutativeand thus computes a
distinct value when call sites occur in different orders.

Efficient composability. We want to handle method inlin-
ing efficiently and gracefully because of its widespread
use in high-performance static and dynamic compilers.
For example, suppose methodA callsB callsC callsD.
If the compiler inlinesB andC into A, nowA callsD.
We want to avoid evaluatingf three times before the in-
lined call toD. By choosing a function whose composi-
tion can be computed efficiently ahead-of-time, we can
statically compute theinlined call site value that repre-
sents the sequence of call sitesB, C, D.

We use the following non-commutative but efficiently com-
posable function to compute PCC values:

f(V, cs) := 3× V + cs

where× is multiplication (modulo232), and+ is addition
(modulo232). We statically computecs for a call site with a
hash of the method and line number.

The function is non-commutative because evaluating call
sites in different orders do not give the same value in general:

f(f(V, csA), csB) = 9× V + (3× csA) + csB)

6= f(f(V, csB), csA) = 9× V + (3× csB) + csA)

since in general

(3× csA) + csB 6= (3× csB) + csA

Non-commutativity is a result of mixing addition and multi-
plication (which are commutative operations by themselves).
At the same time, the function’s composition is efficient be-
cause addition and multiplication are distributive with re-
spect to each other:

f(f(V, csA), csB) =

3× (3 × V + csA) + csB =

9× V + (3× csA + csB)



Note that(3× csA + csB) is a compile-time constant, so the
composition is as efficient to compute asf .

Gropp and Langou et al. use similar functions to compute
hashes for Message Passing Interface (MPI) data types [17,
28]. We experimented with these and other related func-
tions. For example, multiplying by 2 is attractive because it
is equivalent to bitwise shift, but bits for methods low on the
stack are lost as they are pushed off to the left. Circular shift
(equivalent to multiplication by 2 modulo232−1) solves this
problem, but when combined with addition modulo232 − 1
(necessary to keep efficient composability), we lose infor-
mation about multiple consecutive recursive calls; i.e., 32
consecutive recursive calls computesf32(V, cs), which for
this function is simplyV for anyV andcs.

3.4 Querying Calling Context Values

This section describes how clients can query PCC values at
program points. In any given method,V represents the cur-
rent dynamic context,except for the position in the currently
executing method. To checkV at a given program point, we
simply applyf to V using the value ofcsfor the current site
(not necessary a call site), i.e., current local method and line
number:

method() {

...

cs: query(f(V, cs)); // ADDED: query PCC value

statement_of_interest; // application code

...

}

PCC is most applicable to clients that detect new or anoma-
lous behavior, which naturally tend to have two modes,
training andproduction. In training, clients can query PCC
values and store them. In production, clients query PCC val-
ues and determine if they represent anomalous behavior; if
so, PCC walks the stack to determine the calling context
represented by the anomalous PCC value. Many anoma-
lous contexts in production could add high overhead because
each new context requires walking the stack. However, this
case should be uncommon for a well-trained application.

4. Implementation
PCC’s approach is suitable for implementation in ahead-
of-time or dynamic compilation systems. This section de-
scribes how we implement PCC in Jikes RVM 2.4.6, a high-
performance Java-in-Java virtual machine [4, 26]. PCC is
publicly available on the Jikes RVM Research Archive [27].

Jikes RVM uses two compilers at run time. When a
method first executes, Jikes RVM compiles it with a non-
optimizingbaselinecompiler. When a method becomes hot,
Jikes RVM recompiles it with anoptimizing compiler at
successively higher levels of optimization. We modify both
compilers to insert PCC instrumentation.

Computing the PCC value. PCC adds instrumentation to
maintainV that computesf(V, cs) at each call site, where

cs is an integer representing the call site. PCC could assign
each call site a random integer using a lookup table, but this
approach adds space overhead and complicates comparing
PCC values across runs. Instead, PCC computes a hash of
the call site’s method name, declaring class name, descriptor,
and line number. This computation is efficient because it
occurs once at compile time and produces the same results
across multiple program executions.

Implicitly, V is a global variable modified at each call
site. To implement PCC in the context of multiple threads
and processors, we use per-thread PCC values. Since multi-
ple threads map to a single processor, each processor keeps
track of the PCC value for the current thread. When a proces-
sor switches threads, it stores the PCC value to the outgoing
thread and loads the PCC value from the incoming thread.
Accessing the PCC value is efficient in Jikes RVM because
it reserves a register for per-processor storage. In systems
without efficient access to per-processor storage, an imple-
mentation could modify the calling conventions to add the
PCC value as an implicit parameter to every method. While
this alternative approach is elegant, we did not implement it
because it would require pervasive changes to Jikes RVM.

To compute PCC values, the compiler adds instrumenta-
tion that (1) at the beginning of each method, loadsV into
a local variable, (2) at each call site, computes the next call-
ing context withf and updates the globalV , and (3) at the
method return, stores the local copy back to the globalV

(this redundancy is helpful for correctly maintainingV in
the face of exception control flow). At inlined call sites, the
compiler combines multiple call site values ahead-of-time
into a single value and inserts a function that is an efficient
composition of multiple instances off (Section 3.3).

Querying the PCC value. Clients may query PCC values
at different program points, and they may use PCC val-
ues differently. For example, an intrusion detection client
might query the PCC value at each system call, recording se-
quences of consecutive context-sensitive program locations
(in the form of PCC values) during training, then detect-
ing anomalous sequences during production. A client per-
forms work per query that is likely to be similar to hash ta-
ble lookup, so our implementation looks up the PCC value
in a global hash table at each query point. The hash table
implementsopen-address hashinganddouble hashing[12]
using an array of2k 32-bit slots. To look up a PCC value,
the query indexes the array using the lowk bits of V , and
checks if the indexed slot containsV . In the common case,
the slot containsV , and no further action is needed. In the
uncommon case, either (1) the slot is empty (contains zero),
in which case PCC storesV in the slot; or (2) the slot holds
another PCC value, in which case thequeryperforms sec-
ondary hashing by advancings + 1 slots wheres is the high
32− k bits ofV . Secondary hashing tries three times to find
a non-conflicting slot, then gives up.



For efficiency, we inline the common case into hot, opti-
mized code. For simplicity in our prototype implementation,
we use a fixed-size array with220 = 1, 048, 576 elements (4
MB of space), but a more flexible implementation would ad-
just the size to accommodate the number of stored PCC val-
ues collected during training (e.g., intrusion detection clients
could use much less space since there are relatively few dis-
tinct contexts at system calls). The hash table approach is
efficient as long as the table size is roughly at least twice the
size of the number of entries in the table, or table conflicts
will lead to high overhead. Of our benchmarks,pmdqueries
the most distinct PCC values, over 800,000 at Java API calls
(Table 3), for which a hash table with a million elements is
probably not quite large enough for good performance. We
also measure the overhead of querying the PCC value at ev-
ery call as an upper bound for a PCC client (Figure 1); for
several benchmarks with millions of distinct contexts, the
hash table is not large enough, resulting in many hash ta-
ble lookup failures, but the time overhead should still be a
representative upper bound.

Defining calling context. Our implementation distinguishes
between VM methods (defined in Jikes RVM classes), Java
library methods (java.* classes), and application classes
(all other classes). The implementation does not consider
VM and library call sites to be part of calling context, since
call sites in these methods are probably not interesting to de-
velopers and are often considered “black boxes.” All appli-
cation methods on the stack are considered part of the calling
context, even if VM or library methods are above them. For
example, container classes often access application-defined
equals() andhashCode() methods:

at result.Value.equals():164

at java.util.LinkedList.indexOf():406

at java.util.LinkedList.contains():176

at option.BenchOption.getFormalName():80

at task.ManyTask.main():46

Our implementation considers this context to be simply

at result.Value.equals():164

at option.BenchOption.getFormalName():80

at task.ManyTask.main():46

Similarly, sometimes the application triggers the VM, which
calls the application, such as for class initialization:

at dacapo.TestHarness.<clinit>():57

at com.ibm.JikesRVM.classloader.VM_Class.

initialize():1689

at com.ibm.JikesRVM.VM_Runtime.

initializeClassForDynamicLink():545

at com.ibm.JikesRVM.classloader.

VM_TableBasedDynamicLinker.resolveMember():65

at com.ibm.JikesRVM.classloader.

VM_TableBasedDynamicLinker.resolveMember():54

at Harness.main():5

Our implementation considers this context to be

at dacapo.TestHarness.<clinit>():57

at Harness.main():5

PCC implements this definition of calling context. PCC in-
struments application methods only, and in these methods it
instruments call sites to application and library methods.In
cases where the application calls the VM directly, and the
VM then invokes the application (e.g., for class initializa-
tion), PCC walks the stack to determine the correct value of
V , which is feasible because it happens infrequently.

5. Results
This section evaluates the performance and accuracy of
probabilistic calling context (PCC). The methodology sub-
section first describesdeterministiccalling context profiling,
which we use to measure the accuracy of PCC, and experi-
mental configurations, benchmarks, and platform. Then we
present the query points we evaluate, which correspond to
potential clients of PCC. Next we evaluate PCC’s accuracy
at identifying new contexts at these query points, then mea-
sure PCC’s time and space performance and compare it to
walking the stack. Finally we evaluate PCC’s ability to iden-
tify new contexts not observed in a previous run and the
power of calling context to detect new program behavior not
detectable with context-insensitive profiling.

5.1 Methodology

Deterministic calling context profiling. To evaluate the
accuracy of PCC and to collect other statistics, we also im-
plementdeterministiccalling context profiling. Our imple-
mentation constructs a calling context tree (CCT) and main-
tains the current position in the CCT throughout execution.
Our implementation is probably less time and space effi-
cient than the prior work (Section 6) because (1) it collects
per-node statistics during execution, and (2) for simplicity,
we modify only the non-optimizing baseline compiler and
disable the optimizing compiler for these experiments only.
Since we only use it to collect statistics, we are not con-
cerned with its performance.

VM configurations. Jikes RVM runs by default using
adaptive methodology. Initially it uses a baseline non-
optimizing compiler. Then it dynamically identifies frequently-
executed methods and recompiles them at higher optimiza-
tion levels. Because Jikes RVM uses timer-based sampling
to detect hot methods, the adaptive compiler is nondetermin-
istic. To measure performance, we usereplay compilation
methodology, which is deterministic [22]. Replay compila-
tion forces Jikes RVM to compile the same methods in the
same order at the same point in execution on different execu-
tions and thus avoids high variability due to sample-driven
compilation.

Replay compilation usesadvice filesproduced by a previ-
ous well-performing adaptive run (best of five). The advice
files specify (1) the optimization level for compiling each
method, (2) the dynamic call graph profile, and (3) the edge
profile. Fixing these inputs, we execute two consecutive it-
erations of the application. During the first iteration, Jikes



RVM optimizes code using the advice files. The second it-
eration executes only the application with a realistic mix of
unoptimized and optimized code.

We execute performance results using a generational
mark-sweep collector and a fixed heap size of three times
the minimum for each benchmark. We report the minimum
of five trials since it represents the deterministic run least
perturbed by external effects.

Benchmarks. We use the DaCapo benchmarks (version
2006-10), a fixed-workload version of SPEC JBB2000
calledpseudojbb, and SPEC JVM98 [10, 43, 44]. We ex-
cludexalan from performance results because we could not
get it to run correctly with replay compilation, with or with-
out PCC. We use thelarge input size for all performance and
statistics runs, except we usemediumfor eclipse’s statis-
tics runs since withlarge our deterministic calling context
implementation runs out of memory:eclipse’s large input
executes at least 41 million distinct contexts.

Platform. We perform experiments on a 3.6 GHz Pentium
4 with a 64-byte L1 and L2 cache line size, a 16KB 8-
way set associative L1 data cache, a 12Kµops L1 instruction
trace cache, a 2MB unified 8-way set associative L2 on-chip
cache, and 2 GB main memory, running Linux 2.6.12.

5.2 Potential PCC Clients

PCC continuously keeps track of a probabilistically unique
value that represents the current dynamic calling context.To
evaluate PCC’s use in several potential clients, we query the
PCC value at various program points corresponding to these
clients’ needs.

System calls. Anomaly-based security intrusion detection
typically collects sequences of system calls, and adding
context-sensitivity can strengthen detection (Section 2). To
explore this potential client, we add a call to PCC’squery
method before each system call, i.e., each call that can po-
tentially throw a Java security exception. The callees roughly
correspond to operations that can affect external state, e.g.,
file system I/O and network access. Our benchmarks range
in behavior from very few to many system calls. Programs
most prone to security intrusions, such as web servers, are
likely to have many system calls.

Java utility calls. Residual testing seeks to determine
whether behavior seen at production time deviates from be-
havior seen at testing time [37, 47]. Residual testing of a
software component at production time detects if the com-
ponent is called from a new, untested context. These contexts
may indicate errors in the application or poor test coverage.
While application developers often perform residual testing
on a component of their own application, we use the Java
utility libraries as a surrogate for exploring residual testing
on a component library. These libraries provide function-
ality such as container classes, time and date conversions,
and random numbers. This choice is justified because these

libraries are heavily used by our benchmarks and other pro-
grams. At each call to ajava.util.* method, instrumen-
tation queries the PCC value.

Java API calls. We also explore residual testing using the
JavaAPI libraries as a surrogate. This library is a superset
of java.util. We add instrumentation to query the PCC
value at each call to a method injava.*. This simulates
residual testing of a larger component, since calls tojava.*

methods, especiallyjava.lang.* methods, are extremely
frequent in most Java programs (e.g., allString operations
are in the API libraries). The results for Java API calls
show that PCC scales well to a frequently-used component
invoked from many distinct contexts.

All calls. In addition, we evaluate querying the PCC value
at every call site. This configuration would be useful for
measuring code coverage and generating tests with good
code coverage [9, 20, 39], and it represents an upper bound
on overhead for possible PCC clients. We find querying PCC
values at every call is too expensive for deployed use but can
speed up testing time compared with walking the stack.

5.3 PCC Accuracy

Table 2 shows calling context statistics for the first three
potential clients from the previous section.Dynamicis the
number of dynamic calls toquery. For example, for sys-
tem calls,Dynamicis the dynamic number of system calls.
Distinct is the number of distinct calling contexts that occur
at query points.Conf. is the number of PCC value conflicts
that occur for these calling contexts. Conflicts indicate when
PCC maps two or more distinct calling contexts to the same
value (k contexts mapping to the same value count ask − 1
conflicts). We summarize the dynamic and distinct counts
using geometric mean.

The benchmarks show a wide range of behavior with re-
spect to system calls. Seven benchmarks perform more than
1,000dynamicsystem calls, and two benchmarks (antlr,
jython) exercise more than 1,000 distinct contexts at sys-
tem calls. No PCC value conflicts occur between contexts.

As expected, the programs make significantly more calls
into the utility libraries and the entire Java API. For the
utility libraries, dynamiccalls range from about a thou-
sand for several SPEC JVM98 benchmarks to a billion for
bloat, and the number of unique contexts ranges from 176
to 442,845. For the Java API, thedynamiccalls are up to 2
billion for xalan, and distinct contexts range from 905 to
847,108. These potential clients will therefore require many
PCC value queries, but as we show in the next section, PCC
is efficient even with this high load. The numerous zero
entries in the Conf. columns show that PCC is completely
accurate in many cases. The conflicts are low—at most 79
for pmd’s 847,108 distinct contexts at API calls—and are
consistent with the ideal values from Table 1.

Table 3 presents calling context statistics forall executed
contexts, as well as average and maximum call depth. To



System calls Java utility calls Java API calls
Program Dynamic Distinct Conf. Dynamic Distinct Conf. Dynamic Distinct Conf.

antlr 211,490 1,567 0 698,810 8,010 0 24,422,013 128,627 3
bloat 12 10 0 1,030,955,346 143,587 3 1,159,281,573 600,947 40
chart 63 62 0 43,345,653 44,502 0 258,891,525 202,603 4
eclipse 14,110 197 0 3,958,510 54,175 0 132,507,343 226,020 5
fop 18 17 0 5,737,083 25,528 0 9,918,275 37,710 0
hsqldb 12 12 0 90,324 267 0 81,161,541 16,050 0
jython 5,929 4,289 0 76,150,625 131,992 2 543,845,772 628,048 48
luindex 2,615 14 0 5,437,548 1,024 0 39,733,214 102,556 0
lusearch 141 11 0 23,183,861 176 0 113,511,311 905 0
pmd 1,045 25 0 372,159,946 442,845 24 537,017,118 847,108 79
xalan 137,895 59 0 744,311,518 6,896 0 2,105,838,670 17,905 0
DaCapo geo 843 60 19,667,815 12,689 163,072,787 85,963
pseudojbb 507,326 145 0 18,944,200 475 0 30,340,974 3,410 0
compress 7 5 0 1,018 682 0 8,138 1,081 0
jess 50 6 0 4,851,299 2,061 0 16,487,052 5,240 0
raytrace 7 5 0 1,078 684 0 5,331,338 3,383 0
db 7 5 0 65,911,710 767 0 90,130,132 1,439 0
javac 7 5 0 6,499,455 55,994 0 24,677,625 255,334 4
mpegaudio 7 5 0 874 682 0 7,575,084 1,668 0
mtrt 7 5 0 880 682 0 5,573,455 3,366 0
jack 7 5 0 14,987,342 14,718 0 21,771,285 29,461 0
SPEC geo 30 7 199,386 1,724 7,074,200 5,410

Geomean 188 23 2,491,316 5,168 39,734,213 24,764

Table 2. Statistics for calling contexts at several subsetsof call sites. Dynamic and distinct contexts, and PCC value
conflicts, for (1) system calls, (2) Java utility calls, and (3) Java API calls.

All contexts Call depth
Program Dynamic Distinct Conf. Avg Max

antlr 490,363,211 1,006,578 118 21.5 164
bloat 6,276,446,059 1,980,205 45330.6 167
chart 908,459,469 845,432 91 16.6 29
eclipse 1,266,810,504 4,815,901 2,65215.0 102
fop 44,200,446 174,955 2 22.4 49
hsqldb 877,680,667 110,795 1 19.3 36
jython 5,326,949,158 3,859,545 1,73858.3 223
luindex 740,053,104 374,201 12 19.4 34
lusearch 1,439,034,336 6,039 0 15.2 24
pmd 2,726,876,957 8,043,096 7,65328.9 416
xalan 10,083,858,546 163,205 6 19.4 63
DaCapo geo 1,321,327,982 562,992 22.3 78
pseudojbb 186,015,473 19,709 0 7.1 25
compress 451,867,672 1,518 0 13.6 17
jess 198,606,454 18,021 0 43.1 83
raytrace 557,951,542 21,047 0 6.7 18
db 91,794,359 2,118 0 13.0 18
javac 135,968,813 2,202,223 544 29.5 122
mpegaudio 218,003,466 7,576 0 21.9 26
mtrt 564,072,400 21,040 0 6.7 18
jack 35,879,204 82,514 1 22.3 49
SPEC geo 200,039,740 20,695 14.8 32

Geomean 565,012,654 127,324 18.6 52

Table 3. Statistics for every calling context executed.Dynamic and distinct contexts, PCC value conflicts, and average and
maximum size (call depth) of dynamic contexts.



profile every context, we query calling context at every call
site, as well as every method prologue in order to capture leaf
calls. The table shows six programs execute over one million
distinct contexts and another five over one hundred thousand
contexts. The last two columns show that programs spend a
lot of time in fairly deep call chains: average call depth is
almost 20, and maximum call depth is over 100 for several
benchmarks.

5.4 PCC Performance

This section evaluates PCC’s run-time performance. We
evaluate PCC alone without a client and also measure the
additional cost of using PCC with four sets of query points
corresponding to potential clients (Section 3.4). These ex-
periments report application time only using replay compi-
lation, which produces a deterministic measurement.

Figure 1 shows the run-time overhead of PCC, normal-
ized toBase, which represents execution without any instru-
mentation.PCC is the execution time of PCC alone: instru-
mentation keeps track of the PCC value throughout execu-
tion but does not use it. The final four bars show the execu-
tion time of examining the PCC value at call sites correspond
to potential clients: system calls, Java utility calls, Java API
calls, and all calls. PCC actually improveschart’s perfor-
mance, but this anomaly is most likely because of architec-
tural sensitivities due code modifications that may affect the
trace cache and branch predictor.

PCC by itself adds only 3% on average and 9% at most
(for hsqldb). Since system calls are relatively rare, checking
the context at each one adds negligible overhead on average.
PCC value checking at Java utility and API calls adds 2%
and 9% on average over PCC tracking, respectively, which is
interesting given the high frequency of these calls (Table 2).
The highest overhead is 47%, forbloat’s API calls.

Compilation overhead. By adding instrumentation to ap-
plication code, PCC increases compilation time. We mea-
sure compilation overhead by measuring time spent in the
baseline and optimizing compilers during the first iteration
of replay compilation. Figure 2 shows compilation time
overhead. PCC instrumentation alone adds 18% compila-
tion overhead on average. Adding instrumentation to query
the PCC value increases compilation time by an additional
0-31% for system, utility, and API calls, and up to 150%
for all calls, although this overhead could be reduced by not
inlining the query method. Per-phase compiler timings show
that most of the compilation overhead comes from com-
piler phases downstream from PCC instrumentation, due to
the bloated intermediate representation (IR). Although PCC
adds a greater percentage to compilation than application
time, many adaptive optimizers control the fraction of time
spent in compilation. Therefore by design, compilation time
is a small fraction of overall execution time. In our exper-
iments, the time spent in the application is on average 20

times greater than the time spent in compilation, for each of
the PCC configurations shown in Figure 2.

Space overhead. Computing the PCC does not add space
overhead to keep track of the PCC value, but of course the
clients use space proportional to the number of PCC values
they store. Our experiments that test potential clients simply
use a fixed-size hash table with220 = 1, 048, 576 slots (4
MB), as described in Section 4, but real clients would use
space proportional to their needs. Clients storing PCC values
in a large data structure could potentially hurt execution time
due to poor access locality.

PCC also adds space overhead by increasing the size of
generated machine code. We find that on average, PCC in-
strumentation adds 18% to code size. Adding instrumenta-
tion to query the PCC value at system calls, utility calls, API
calls, and all calls adds an additional 0%, 2%, 6%, and 14%,
respectively.

Comparison with stack-walking. An alternative to PCC is
to walk the stack at each query point (Section 6). We evaluate
here how well stack-walking performs for the call sites cor-
responding to potential clients. We implement stack-walking
by simply calling a method that walks the entire stack at
each query point; we do not add any PCC instrumentation
for these runs. Stack-walking implementations would typi-
cally look up a unique identifier for the current context [36],
and they could save time by walking only the subset of calls
occurring since the last walk [49], but we do not model these
costs here.

Figure 3 shows the execution time overhead of walking
the stack at various points corresponding to three potential
clients: system calls, Java utility calls, and Java API calls
(we omit “all calls” because its overhead is greater than for
Java API calls, which is very high). Since most benchmarks
have few dynamic system calls, stack-walking adds negligi-
ble overhead at these calls. However, for the two benchmarks
with more than 200,000 dynamic system calls,antlr and
pseudojbb, stack-walking adds 67% and 62% overhead, re-
spectively. These results show the substantial cost of walking
the stack even for something as infrequent as system calls.
Applications prone to security attacks such as web servers
are likely to have many system calls.

5.5 Comparing Calling Contexts Between Runs

The previous sections demonstrate that PCC is an efficient
mechanism for identifying new context-sensitive behavior
in a variety of potential clients. This section explores the
sensitivity of calling context behavior to different program
inputs by comparing calling context profiles between two
runs of each benchmark, thelargeandmediuminput sets. We
note that while some benchmarks execute many new distinct
contexts with the large input not seen with medium (which
is not surprising since it is a larger workload by design), we
do not expect so much new behavior in production mode
on well-trained applications. Nonetheless, the results are



antlr
bloat

chart
eclipse

fop hsqldb
jython

luindex

lusearch

pmd
pseudojbb

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

geomean
w/o chart

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

 a
pp

lic
at

io
n 

tim
e

Base
PCC
PCC + system calls
PCC + util calls
PCC + API calls
PCC + all calls

2.3 2.8 2.1

Figure 1. Application execution time overhead of maintaining the PCC value and querying it at (1) system calls, (2)
Java utility calls, (3) Java API calls, and (4) all calls.

antlr
bloat

chart
eclipse

fop hsqldb
jython

luindex

lusearch

pmd
pseudojbb

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

geomean

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

 c
om

pi
la

tio
n 

tim
e

Base
PCC
PCC + system calls
PCC + util calls
PCC + API calls
PCC + all calls

2.3 2.2 2.5

Figure 2. Compilation time overhead due to adding instrumentation to maintain the PCC value and query it at (1)
system calls, (2) Java utility calls, (3) Java API calls, and(4) all calls.

antlr
bloat

eclipse

fop hsqldb
jython

luindex

lusearch

pmd
pseudojbb

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

 a
pp

lic
at

io
n 

tim
e

Base
SW for system calls
SW for util calls
SW for API calls

3.1
>10.0

>10.0
>10.0

7.1
>10.0

>10.0
>10.0

>10.0>10.0
>10.0

>10.0
>10.0

8.9
>10.0

>10.0
>10.0

>10.0
>10.0

>10.0
>10.0

3.5 >10.0
>10.0

>10.0
>10.0

>10.0 2.7 >10.0
>10.0

Figure 3. Application execution time overhead of walking the stack at (1) system calls, (2) Java utility calls, and (3) Java
API calls.



Relative increase of large input compared to medium input
Java utility calls Java API contexts

Program Dyn. New distinct Conf. Dyn. New distinct Conf.

antlr 2.5x 0 (0.0%) 0 2.5x 8 (0.0%) 0
bloat 11.8x 74,536 (51.9%) 3 10.2x 320,864 (53.4%) 33
chart 2.3x 31,419 (70.6%) 0 2.5x 139,599 (68.9%) 4
eclipse∗ 4.2x 15,114 (27.9%) 0 5.8x 121,939 (54.0%) 4
fop 1.0x 0 (0.0%) 0 1.0x 0 (0.0%) 0
hsqldb 6.0x 0 (0.0%) 0 2.5x 13 (0.1%) 0
jython 7.5x 12,705 (9.6%) 0 7.3x 59,202 (9.4%) 5
luindex 1.0x 0 (0.0%) 0 1.0x 7,398 (7.2%) 0
lusearch 2.0x 0 (0.0%) 0 2.0x 0 (0.0%) 0
pmd 4.4x 368,862 (83.3%) 24 4.4x 711,223 (84.0%) 79
xalan 10.0x 0 (0.0%) 0 10.0x 15 (0.1%) 0
Dacapo geo 3.5x 3.3x
compress 1.1x 0 (0.0%) 0 2.2x 0 (0.0%) 0
jess 61.5x 530 (25.7%) 0 56.7x 1,827 (34.9%) 0
raytrace 1.0x 0 (0.0%) 0 11.0x 25 (0.7%) 0
db 71.6x 25 (3.3%) 0 61.4x 72 (5.0%) 0
javac 39.9x 36,419 (65.0%) 0 36.9x 163,916 (64.2%) 6
mpegaudio 1.0x 0 (0.0%) 0 10.9x 32 (1.9%) 0
mtrt 1.0x 0 (0.0%) 0 7.7x 25 (0.7%) 0
jack 8.5x 0 (0.0%) 0 8.5x 0 (0.0%) 0
SPEC geo 6.0x 14.7x

Geomean 4.4x 6.2x

Table 4. Comparing calling contexts at API calls between large and medium inputs. ∗Medium vs. small for eclipse.

interesting because they give an indication of how calling
context behavior differs from one run to the next and how
well PCC identifies new context-sensitive behavior.

Table 4 compares the calling contexts at Java utility and
Java API calls for runs with the medium and large inputs. We
do not show data for system calls since they vary very little
between medium and large inputs: only five benchmarks ex-
ecute new calling contexts at system calls (chart executes
the most, 38). We omitpseudojbb since it has only one
input size. We use small and medium foreclipse (Sec-
tion 5.1).

In the table,Dyn. is the factor increase of dynamic calling
contexts in the large run vs. the medium run. All DaCapo
programs exceptfop and luindex exercise substantially
more dynamic calls to the utility libraries and to the whole
Java API.New distinctis the number of new distinct calling
contexts occurring in the large but not in the medium run,
and the percentage is the value relative to all distinct call-
ing contexts from the large run.Conf.is the number of PCC
value conflicts that occur when adding the new PCC values
seen only in the large run, to the set of PCC values seen in
the medium run. For example,pmd executes more than four
times as many dynamic Java API calls in the large as in the
medium run, and 711,223 distinct contexts occur in the large
run that were not observed in the medium run. These con-
texts account for 84% of the large run’s distinct contexts;

and PCC values for these new calling contexts have 79 con-
flicts when added to the PCC values from the medium run, so
the probability of a particular new calling context not being
identified as new is about 1 in 10,000. Eleven of the pro-
grams execute few if any new distinct calling contexts, even
if they execute many times more dynamic calls to Java utility
and API methods, while five benchmarks execute hundreds
of thousands of new distinct calling contexts. The programs
generate about 1 conflict for every 10,000 new contexts at
worst, which should be a reasonable false negative rate for
most clients.

5.6 Evaluating Context Sensitivity

This section compares calling context profiling tocall site
profiling, which is contextinsensitive, to evaluate whether
calling context detects significantly more previously unob-
served behavior than call sites alone. Table 5 compares call-
ing contexts and call sites. The first two columns are counts
of distinct calling contexts and call sites for calls to Java
API methods (the calling context figures are the same as in
Table 2). For most programs, there are many more calling
contexts than call sites, which indicates that call sites are in-
voked from multiple calling contexts. The first two columns
show that thousands of call sites generate hundreds of thou-
sands of calling contexts.



Large input Large-medium diff Contexts w/ new
Program Contexts Call sites Contexts Call sites call sites

antlr 128,627 4,184 8 0 0
bloat 600,947 3,306 320,864 82 1,002
chart 202,603 2,335 139,599 379 9,112
eclipse∗ 226,020 9,611 121,939 1,240 46,206
fop 37,710 2,225 0 0 0
hsqldb 16,050 947 13 0 0
jython 628,048 1,830 59,202 1 1
luindex 102,556 654 7,398 0 0
lusearch 905 507 0 0 0
pmd 847,108 1,890 711,223 48 388
xalan 17,905 1,530 15 2 2
Dacapo geo 85,963 1,897
pseudojbb 3,410 846 17 0 0
compress 1,081 1,017 0 0 0
jess 5,240 1,363 1,827 22 22
raytrace 3,383 1,215 25 2 5
db 1,439 1,105 72 4 4
javac 255,334 1,610 163,916 9 201
mpegaudio 1,668 1,072 32 1 4
mtrt 3,366 1,190 25 2 5
jack 29,461 2,173 0 0 0
SPEC geo 5,410 1,242

Geomean 24,764 1,568

Table 5. Comparing call site profiles with calling context onJava API calls. ∗Medium vs. small inputs for eclipse.

Finally, we consider the power of residual calling con-
text profiling compared to residual call site profiling on
the medium versus the large inputs. Columns underLarge-
medium diffcount the distinct calling contexts and call sites
seen in a large run but not a medium run. In several pro-
grams many new distinct calling contexts occur, but many
fewer new call sites occur, andluindex in particular ex-
ecutes 7,398 new contexts without executing any new call
sites. The final column shows the number of new, distinct
calling contexts that correspond to the new call sites in the
large run. This column shows how well residual call site
profiling would do at identifying new calling context be-
havior. If every new call site (i.e., call site seen in large but
not medium run) triggered stack-walking, call site profiling
would identify only a small fraction of the new calling con-
texts for most programs.

6. Related Work
This section discusses related work in calling context pro-
filing. It first considers stack-walking, then heavyweight ap-
proaches that construct a calling context tree (CCT), and fi-
nally sampling-based approaches. We also consider related
forms of profiling.

Walking the stack. One approach for identifying the cur-
rent calling context is to walk the program stack, then look

up the corresponding calling context identifier in a call-
ing context tree (CCT) [36, 41]. Unfortunately, walking the
stack more than very infrequently is too expensive for pro-
duction environments, as shown in Section 5.4.

Calling context tree. An alternative approach to walking
the stack is to build a dynamic calling context tree (CCT)
where each node in the CCT is a context, and during execu-
tion maintain the current position in the CCT [2, 42]. This
instrumentation slows C programs down by a factor of 2 to
4. The larger number of contexts in Java programs and the
compile-time uncertainty of virtual dispatch further increase
CCT time and space overheads. The size of CCT nodes are
100 to 500 bytes in previous work, whereas PCC values are
very compact in comparison, since each one only needs 32
or 64 bits, and storing them in a half-full hash table achieves
good run-time performance, as shown in Section 5.4.

Sampling-based approaches.Sampling-based and trunca-
tion approaches keep overhead low by identifying the call-
ing context infrequently [8, 15, 21, 49, 52]. Clients use
hot context information for optimizations such as context-
sensitive inlining [21] and context-sensitive allocationsites
for better object lifetime prediction and region-based alloca-
tion [25, 40]. Hazelwood and Grove sample the stack peri-
odically to collect contexts to drive context-sensitive inlin-
ing [21]. Zhuang et al. improve on sampling-based stack-



walking by performingbursty profiling after walking the
stack, since it is relatively cheap to update the current posi-
tion in the CCT on each call and return for a short time [52].
Bernat and Miller limit profiling to a subset of methods [8].
Froyd et al. use unmodified binaries and achieve extremely
low overhead through stack sampling [15]. Sampling is use-
ful for identifying hot calling contexts, but it is not suitable
for clients such as testing, security, and debugging because
sampling sacrifices coverage, which is key for these clients.

Although PCC primarily targets clients requiring high
coverage, it could potentially improve the accuracy-overhead
trade-off of sampling-based approaches. Zhuang et al.’s call-
ing context profiling approach avoids performing bursty
sampling at already-sampled calling contexts [52]. Currently
they walk the stack to determine if the current context has
been sampled before, but instead they could use PCC to
quickly determine, with high probability, if they have al-
ready sampled a calling context.

Dynamic call graph profiling. Dynamic optimizers of-
ten profile call edges to construct a dynamic call graph
(DCG) [5, 29, 38, 45], which informs optimizations such
as inlining. DCGs lack context sensitivity and thus provide
less information than calling context profiles.

Path profiling. Ball-Larus path profiling computes a unique
number through each possible path in the control flow
graph [7]. An intriguing idea is applying path profiling in-
strumentation to the dynamic call graph and computing a
unique number for each possible context. However, this
approach is problematic because call graphs, which have
thousands of nodes for our benchmarks, are typically much
larger than control flow graphs (CFGs). The number of pos-
sible paths both through CFGs and call graphs is exponential
in the size of the graph in practice, so the statically possible
contexts cannot be assigned unique 32- or even 64-bit val-
ues. Other challenges include: (1) recursion leads to cyclic
graphs; (2) dynamic class loading modifies the graph at run
time; and (3) virtual dispatch obscures call targets and com-
plicates call edge instrumentation. Wiedermann computes
a unique number per context at run time by applying Ball-
Larus path numbering to the call graph, but does not evalu-
ate whether large programs can be numbered uniquely [50].
His approach uses C programs, avoiding the challenges of
dynamic class loading and virtual dispatch, and handles re-
cursion by collapsing strongly-connected components in the
call graph. Melski and Reps presentinterprocedural path
profiling that captures both inter- and intraprocedural con-
trol flow, but their approach does not scale because it adds
complex call edge instrumentation, and there are too many
statically possible paths for nontrivial programs [33].

As Section 2 points out, much prior work uses path pro-
filing to understand dynamic behavior in testing, debugging,
and security, but dynamic object-oriented languages need
calling context, too, since it captures important behavior.
Paths and calling contexts are largely orthogonal since paths

captureintraproceduralcontrol flow while calling context
providesinterproceduralcontrol flow. One could imagine
combining PCC and path profiling for best-of-both-worlds
approaches in residual testing, anomaly-based bug detection,
and intrusion detection.

7. Conclusion
Complex object-oriented programs motivate calling context
as a program behavior indicator in residual testing, anomaly-
based bug detection, and security intrusion detection. Previ-
ous techniques are too expensive for use in production envi-
ronments. We present a probabilistic calling context (PCC)
approach suited to detecting new behavior that is efficient
enough to use in deployed systems. PCC maintains a value
representing the current calling context in a probabilistically
unique value. PCC adds just 3% overhead on average to a
Java VM. Querying the PCC value at points corresponding
to testing and security clients adds 0 to 9% additional over-
head, and querying at every call adds 49%, while missing
relatively few new contexts due to conflicts (0.1% at worst).
These results show that PCC is efficient and accurate enough
to add context sensitivity to dynamic analyses that detect
new or anomalous program behavior.

Acknowledgments
Many thanks to Vitaly Shmatikov for feedback and advice
regarding security applications. Thanks to Samuel Guyer,
Jungwoo Ha, Nicholas Nethercote, Ben Wiedermann, and
Emmett Witchel for helpful discussions. Thanks to Jungwoo
Ha, Calvin Lin, Ben Wiedermann, and the anonymous re-
viewers for valuable feedback on the paper.

References
[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,

P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. Mergen,
T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. Shepherd,
S. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The
Jalapeño Virtual Machine.IBM Systems Journal, 39(1):211–
238, 2000.

[2] G. Ammons, T. Ball, and J. R. Larus. Exploiting Hardware
Performance Counters with Flow and Context Sensitive
Profiling. In ACM Conference on Programming Language
Design and Implementation, pages 85–96, Las Vegas, NV,
1997.

[3] T. Apiwattanapong and M. J. Harrold. Selective Path
Profiling. In ACM Workshop on Program Analysis for
Software Tools and Engineering, pages 35–42, 2002.

[4] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney.
Adaptive Optimization in the Jalapeño JVM. InACM
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 47–65, 2000.

[5] M. Arnold, M. Hind, and B. G. Ryder. An Empirical Study
of Selective Optimization. InInternational Workshop on



Languages and Compilers for Parallel Computing, pages
49–67, London, UK, 2001. Springer-Verlag.

[6] T. Ball. The SLAM Toolkit: Debugging System Software via
Static Analysis, 2001.

[7] T. Ball and J. R. Larus. Efficient Path Profiling. InIEEE/ACM
International Symposium on Microarchitecture, pages 46–57,
1996.

[8] A. R. Bernat and B. P. Miller. Incremental Call-Path Profiling.
Concurrency and Computation: Practice and Experience,
2006.

[9] D. Binkley. Semantics Guided Regression Test Cost
Reduction. IEEE Transactions on Software Engineering,
23(8):498–516, 1997.

[10] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo Benchmarks:
Java Benchmarking Development and Analysis. InACM
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 169–190, 2006.

[11] A. Chakrabarti and P. Godefroid. Software Partitioning
for Effective Automated Unit Testing. InACM & IEEE
International Conference on Embedded Software, pages 262–
271, 2006.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, chapter 11. The MIT Press,
McGraw-Hill Book Company, 2nd edition, 2001.

[13] L. Fei and S. P. Midkiff. Artemis: Practical Runtime
Monitoring of Applications for Execution Anomalies. In
ACM Conference on Programming Language Design and
Implementation, pages 84–95, 2006.

[14] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and
W. Gong. Anomaly Detection Using Call Stack Information.
In IEEE Symposium on Security and Privacy, page 62. IEEE
Computer Society, 2003.

[15] N. Froyd, J. Mellor-Crummey, and R. Fowler. Low-Overhead
Call Path Profiling of Unmodified, Optimized Code. InACM
International Conference on Supercomputing, pages 81–90,
2005.

[16] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
Automated Random Testing. InACM Conference on
Programming Language Design and Implementation, pages
213–223, 2005.

[17] W. Gropp. Runtime Checking of Datatype Signatures in MPI.
In European PVM/MPI Users’ Group Meeting on Recent
Advances in Parallel Virtual Machine and Message Passing
Interface, pages 160–167, London, UK, 2000. Springer-
Verlag.

[18] J. Ha, C. J. Rossbach, J. V. Davis, I. Roy, H. E. Ramadan,
D. E. Porter, D. L. Chen, and E. Witchel. Improved Error
Reporting for Software that Uses Black Box Components.
In ACM Conference on Programming Language Design and
Implementation, pages 101–111, 2007.

[19] S. Hangal and M. S. Lam. Tracking Down Software Bugs
Using Automatic Anomaly Detection. InACM International
Conference on Software Engineering, pages 291–301, 2002.

[20] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi.
An Empirical Investigation of the Relationship Between
Spectra Differences and Regression Faults.Software Testing,
Verification & Reliability, 10(3):171–194, 2000.

[21] K. Hazelwood and D. Grove. Adaptive Online Context-
Sensitive Inlining. InIEEE/ACM International Symposium
on Code Generation and Optimization, pages 253–264, 2003.

[22] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss,
Z. Wang, and P. Cheng. The Garbage Collection Advantage:
Improving Program Locality. InACM Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, pages 69–80, 2004.

[23] H. Inoue. Anomaly Detection in Dynamic Execution
Environments. PhD thesis, University of New Mexico, 2005.

[24] H. Inoue and S. Forrest. Anomaly Intrusion Detection in
Dynamic Execution Environments. InWorkshop on New
Security Paradigms, pages 52–60, 2002.

[25] H. Inoue, D. Stefanović, and S. Forrest. On the Prediction
of Java Object Liftimes.ACM Transactions on Computer
Systems, 55(7):880–892, 2006.

[26] Jikes RVM. http://www.jikesrvm.org.

[27] Jikes RVM Research Archive. http://www.jikesrvm.org/-
Research+Archive.

[28] J. Langou, G. Bosilca, G. Fagg, and J. Dongarra. Hash
Functions for Datatype Signatures in MPI. InEuropean
Parallel Virtual Machine and Message Passing Interface
Conference, pages 76–83, 2005.

[29] B. Lee, K. Resnick, M. D. Bond, and K. S. McKinley.
Correcting the Dynamic Call Graph Using Control Flow
Constraints. InInternational Conference on Compiler
Construction, 2007.

[30] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Scalable Statistical Bug Isolation. InACM Conference on
Programming Language Design and Implementation, pages
15–26, 2005.

[31] C. Liu, X. Yan, H. Yu, J. Han, and P. S. Yu. Mining
Behavior Graphs for Backtrace of Noncrashing Bugs. In
SIAM International Converence on Data Mining, pages 286–
297, 2005.

[32] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting
Atomicity Violations via Access-Interleaving Invariants. In
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 37–
48, 2006.

[33] D. Melski and T. Reps. Interprocedural Path Profiling. In
International Conference on Compiler Construction, pages
47–62, 1999.

[34] M. Mitzenmacher and E. Upfal.Probability and Computing:
Randomized Algorithms and Probabilistic Analysis. Cam-
bridge University Press, New York, NY, USA, 2005.

[35] G. J. Myers.The Art of Software Testing. Wiley, 1979.



[36] N. Nethercote and J. Seward. Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation. In
ACM Conference on Programming Language Design and
Implementation, pages 89–100, 2007.

[37] C. Pavlopoulou and M. Young. Residual test coverage
montoring. InACM International Conference on Software
Engineering, pages 277–284, May 1999.

[38] F. Qian and L. Hendren. Towards Dynamic Interprocedural
Analysis in JVMs. InUSENIX Symposium on Virtual
Machine Research and Technology, pages 139–150, 2004.

[39] A. Rountev, S. Kagan, and J. Sawin. Coverage Criteria for
Testing of Object Interactions in Sequence Diagrams. In
Fundamental Approaches to Software Engineering, LNCS
3442, pages 282–297, 2005.

[40] M. L. Seidl and B. G. Zorn. Segregating Heap Objects by
Reference Behavior and Lifetime. InACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 12–23, 1998.

[41] J. Seward and N. Nethercote. Using Valgrind to Detect
Undefined Value Errors with Bit-Precision. InUSENIX
Annual Technical Conference, pages 17–30, 2005.

[42] J. M. Spivey. Fast, Accurate Call Graph Profiling.Softw.
Pract. Exper., 34(3):249–264, 2004.

[43] Standard Performance Evaluation Corporation.SPECjvm98
Documentation, release 1.03 edition, 1999.

[44] Standard Performance Evaluation Corporation.SPECjbb2000
Documentation, release 1.01 edition, 2001.

[45] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and

T. Nakatani. A Dynamic Optimization Framework for
a Java Just-in-Time Compiler. InACM Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, pages 180–195, 2001.

[46] TIOBE Software. TIOBE programming community index,
2007. http://tiobe.com.tpci.html.

[47] K. Vaswani, A. V. Nori, and T. M. Chilimbi. PreferentialPath
Profiling: Compactly Numbering Interesting Paths. InACM
Symposium on Principles of Programming Languages, pages
351–362, 2007.

[48] D. Wagner and P. Soto. Mimicry Attacks on Host-Based
Intrusion Detection Systems. InACM Conference on
Computer and Communications Security, pages 255–264.
ACM Press, 2002.

[49] J. Whaley. A Portable Sampling-Based Profiler for Java
Virtual Machines. InACM Conference on Java Grande,
pages 78–87. ACM Press, 2000.

[50] B. Wiedermann. Know your Place: Selectively Executing
Statements Based on Context. Technical Report TR-07-38,
University of Texas at Austin, 2007.

[51] T. Zhang, X. Zhuang, S. Pande, and W. Lee. Anomalous
Path Detection with Hardware Support. InInternational
Conference on Compilers, Architectures and Synthesis for
Embedded Systems, pages 43–54, 2005.

[52] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi.
Accurate, Efficient, and Adaptive Calling Context Profiling.
In ACM Conference on Programming Language Design and
Implementation, pages 263–271, 2006.


