
Tracking Bad Apples:
Reporting the Origin of Null and Undefined Value Errors ∗

Michael D. Bond

Dept. of Computer Sciences
University of Texas at Austin

mikebond@cs.utexas.edu

Nicholas Nethercote

National ICT Australia

njn@csse.unimelb.edu.au

Stephen W. Kent

Dept. of Computer Sciences
University of Texas at Austin

stephenkent@mail.utexas.edu

Samuel Z. Guyer

Dept. of Computer Science
Tufts University

sguyer@cs.tufts.edu

Kathryn S. McKinley

Dept. of Computer Sciences
University of Texas at Austin

mckinley@cs.utexas.edu

Abstract
Programs sometimes crash due tounusablevalues, for ex-
ample, when Java and C# programs dereference null point-
ers and when C and C++ programs use undefined values to
affect program behavior. A stack trace produced on such a
crash identifies the effect of the unusable value, not its cause,
and is often not much help to the programmer.

This paper presents efficientorigin trackingof unusable
values; it shows how to record where these values come into
existence, correctly propagate them, and report them if they
cause an error. The key idea isvalue piggybacking: when
the original program stores an unusable value, value piggy-
backing instead stores origin information in the spare bitsof
the unusable value. Modest compiler support alters the pro-
gram to propagate these modified values through operations
such as assignments and comparisons. We evaluate two im-
plementations: the first tracks null pointer origins in a JVM,
and the second tracks undefined value origins in a memory-
checking tool built with Valgrind. These implementations
show that origin tracking via value piggybacking is fast and
often useful, and in the Java case, has low enough overhead
for use in a production environment.

∗This work is supported by an Intel fellowship, NSF CCF-0429859,
NSF CCR-0311829, NSF EIA-0303609, DARPA F33615-03-C-4106, In-
tel, IBM, and Microsoft. Any opinions, findings and conclusions expressed
herein are the authors’ and do not necessarily reflect those of the sponsors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-786-5/07/0010. . . $5.00

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging—Debugging aids

General Terms Reliability, Performance, Experimentation

Keywords Debugging, Low-Overhead Run-Time Support,
Null Pointer Exceptions, Undefined Values, Managed Lan-
guages, Java, Valgrind

1. Introduction
Finding the causes of bugs is hard, both during testing and
after deployment. One reason is that a bug’s effect is often
far from its cause. Liblit et al. examined bug symptoms for
various programs and found that inspecting the methods in a
stack trace did not identify the method containing the error
for 50% of the bugs [21].

This paper offers help for a class of bugs due tounusable
valuesthat either cause a failure directly or result in erro-
neous behavior. In managed languages such as Java and C#,
thenull valueis unusable and causes a null pointer exception
when dereferenced. In languages like C and C++,undefined
values—those that are uninitialized, or derived from unde-
fined values—are unusable, and their use can cause various
problems such as silent data corruption, altered control flow,
or a segmentation fault.

Failures due to unusable values are difficult to debug be-
cause (1) the origin of the unusable value may be far from
the point of failure, having been propagated through assign-
ments, operations, and parameter passing; and (2) unusable
values themselves yield no useful debugging information.
At best, the programmer sees a stack trace from the crash
point, but this identifies the effect of the unused value, notits
source. This problem is particularly bad for deployed soft-
ware since the bug may be difficult to reproduce.

Null pointer exceptions are a well-known problem for
Java programmers. Eric Allen writes the following inDi-
agnosing Javafor the IBM developerWorks Java Zone [2]:

Of all the exceptions a Java programmer might encounter,
the null-pointer exception is among the most dreaded, and
for good reason: it is one of the least informative exceptions
that a program can signal. Unlike, for example, a class-
cast exception, a null-pointer exception says nothing about
what was expected instead of the null pointer. Furthermore,
it says nothing about where in the code the null pointer
was actually assigned. In many null-pointer exceptions, the
true bug occurs where the variable is actually assigned to
null. To find the bug, we have to trace back through the flow
of control to find out where the variable was assigned and
determine whether doing so was incorrect. This process can
be particularly frustrating when the assignment occurs in a
package other than the one in which the error was signaled.

Our goal is to provide this information automatically and at
a very low cost.

Unused value errors are similarly difficult to debug for
programs written in unmanaged languages such as C and
C++. For example, Memcheck [31] is a memory checking
tool built with the dynamic binary instrumentation frame-
work Valgrind [26]. Memcheck can detect dangerous uses
of undefined values, but prior to this paper gave no origin
information about those values. Requests for such origin in-
formation from Memcheck users are common enough that
the FAQ explains the reason for this shortcoming [26].

The key question is: why does this variable contain an un-
usable value? We answer this question and solve this prob-
lem by introducingorigin tracking. Origin tracking records
program locations where unusable values are assigned, so
they can be reported at the time of failure. We leverage the
property that unusable values are difficult to debug because
they contain no useful information and store the origin infor-
mationin place of the unusable values themselves, which is
a form ofvalue piggybacking. Value piggybacking requires
no additional space, making origin tracking efficient. With
some modifications to program execution, origin values flow
freely through the program: they are copied, stored in the
heap, or passed as parameters. They thus act like normal un-
usable values until the programs uses them inappropriately,
whereupon we report the origin, which is often exactly what
the programmer needs to diagnose the defect.

We implement two separate origin tracking implementa-
tions: one tracks null pointer origins in Java, and the other
tracks origins of undefined values in binaries of C, C++, For-
tran, and other languages. For the null pointer implementa-
tion, we modify Jikes RVM [3, 16], a high-performance vir-
tual machine. The undefined value implementation is built
on top of the memory checking tool Memcheck [31]. Both
origin tracking implementations are publicly available (Sec-
tions 2 and 5).

Our results show that origin tracking is effective at re-
porting the origins of Java null pointer exceptions and adds

minimal overhead to overall execution time (4% on average),
making it suitable for deployed programs. We collected a test
suite of 12 null pointer exceptions from publicly available
Java programs with documented, reproducible bugs. Based
on examining the stack trace, origin, source code, and bug
report, we determine that origin tracking correctly reports
the origin for all of the 12 bugs in this test suite, provides in-
formation not available from the stack trace for 8 bugs, and
is useful for debugging in 7 of those 8 cases.

Origin tracking in Memcheck is accurate for 32-bit un-
defined values but fails to identify origins for values too
small to hold a program location. It finds 72% of undefined
value errors involving 32-bit data in 20 C and C++ programs.
Memcheck is a heavy-weight instrumentation tool, and it al-
ready slows programs down by a factor of 28 on average.
Our additions to Memcheck add on average no measurable
overhead.

The main contributions of this work are:

• Value piggybackingto record and propagate debugging
information in place of unusable values.

• Two new applications of value piggybacking fororigin
tracking: (a) identifying the origins of null pointer excep-
tions in deployed Java programs cheaply and (b) identify-
ing the origins of undefined values in C, C++, and Fortran
programs at testing time.

These applications are notable because previous value pig-
gybacking applications conveyed only one or two bits of in-
formation per value (e.g., [20]), whereas we show it can con-
vey more useful information. Since our approach requires
modest changes to the Java virtual machine and incurs very
low overhead, commercial JVMs could rapidly deploy it to
help programmers find and fix bugs.

2. Origin Tracking in Java
This section describes our implementation for tracking the
origins of null references in Java programs. In each subsec-
tion, we first describe the general strategy used to piggyback
information on null references, and then describe the details
specific to our Jikes RVM implementation.

2.1 Supporting Nonzero Null References

Java virtual machines typically use the value zero to repre-
sent a null reference. This choice allows operations on null
references, such as comparisons and detection of null pointer
exceptions, to be simple and efficient. However, the Java VM
specification does not require the use of a particular concrete
value for encoding null [22]. We modify the VM to instead
represent null using a range of reserved addresses. Objects
may not be allocated to this range, allowing null and object
references to be differentiated easily.

Our implementation reserves addresses in the lowest
32nd of the address space:0x00000000–0x07ffffff. That
is, a reference is null if and only if its highest five bits are

Java semantics Standard VM Origin tracking

(a) Assignment of obj = null; obj = 0; obj = this location;

null constant
(b) Object obj = new Object(); ...allocate object allocate object ...
allocation foreach ref slot i foreach ref slot i

obj[i] = 0; obj[i] = this location;

...call constructor call constructor ...
(c) Null reference b = (obj == null); b = (obj == 0); b = ((obj & 0xf8000000) == 0)

comparison
(d) General reference b = (obj1 == obj2); b = (obj1 == obj2); if (((obj1 & 0xf8000000) == 0))

comparison b = ((obj2 & 0xf8000000) == 0);

else

b = (obj1 == obj2);

Table 1. How origin tracking handles uses of null in Java code. Column 2 shows example code involving null. Column 3
shows typical semantics for an unmodified VM. Column 4 shows semantics in a VM implementing origin tracking.

zero. The remaining 27 bits encode a program location as
described in the next section.

As an alternative to a contiguous range of null values,
null could be represented as any value with its lowest bit
set. Object references and null could be differentiated easily
since object references are word-aligned. VMs such as Jikes
RVM that implement null pointer exceptions using hardware
traps could instead use alignment traps. We did not imple-
ment this approach since unmodified Jikes RVM compiled
for IA32 performs many unaligned accesses already (align-
ment checking is disabled by default on IA32).

2.2 Encoding Program Locations

The strategy described above provides 27 bits for encoding
an origin in a null reference. We use one of these bits to dis-
tinguish between two cases: nulls that originate in a method
body (the common case) and nulls that result from unini-
tialized static fields. In the latter case, the remaining 26 bits
identify the particular field. In the former case, we encode
the program location as a<method, line number> pair us-
ing one more bit to choose from among the following two
layouts for the remaining 25 bits:

1. The default layout uses 13 bits for method ID and 12 bits
for bytecode index, which is easily translated to a line
number.

2. The alternate layout uses 8 bits for method ID and 17 bits
for bytecode index, and is used only when the bytecode
index does not fit in 12 bits. The few methods that fall
into this category are assigned separate 8-bit identifiers.

We find these layouts handle all the programs in our test suite
for origin tracking. Alternatively, one could assign a unique
27-bit value to each program location that assigns null via a
lookup table. This approach would use space proportional to
the size of the program to store the mapping. Our approach
adds no space since per-method IDs already exist in the VM.

2.3 Redefining Program Operations.

Our implementation redefines Java operations to accommo-
date representing null using a range of values.

Null Assignment At null assignments, our modified VM
assigns the 27-bit value corresponding to the current pro-
gram location (method and line number) instead of zero. The
dynamic compiler computes this value at compile time. Ta-
ble 1, row (a) shows the null assignment in Java and its corre-
sponding semantics for an unmodified VM and for the origin
a VM implementing origin tracking.

Object Allocation When a program allocates a new object,
whether scalar or array, its reference slots are initialized to
null by default. VMs implement this efficiently by allocating
objects into mass-zeroed memory. Since origin tracking uses
nonzero values to represent null, our modified VM adds code
at object allocations that initializes each reference slotto the
program location, as shown in Table 1, row (b). These values
identify the allocation site as the origin of the null.

Since reference slot locations are known at allocation
time, we can modify the compiler to optimize the code
inserted at allocation sites. For hot sites (determined from
profiles, which are collected by Jikes RVM and other VMs),
the compiler inlines the code shown in the last column of
Table 1, row (b). If the number of slots is a small, known
constant (true for all small scalars, as well as small arrays
where the size is known at compile time), the compiler
flattens the loop.

Staticfields are also initialized to null, but during class
initialization. We modify the VM’s class initialization tofill
each static reference field with a value representing the static
field (the VM’s internal ID for the field). Of the 12 bugs we
evaluate in Section 3, one manifests as a null assigned at
class initialization time.

Null Comparison To implement checking whether a ref-
erence is null, VMs compare the reference to zero. Origin
tracking requires a more complex comparison since null may
have any value from a range. Since our implementation uses

the range0x00000000–0x07ffffff for null, it implements
the null test using a bitwise AND with0xf8000000, as
shown in Table 1, row (c).

General Reference Comparison A more complex case is
when a program compares two references. With origin track-
ing, two references may have different underlying values
even though both represent null. To handle this case, the ori-
gin tracking implementation uses the following test: two ref-
erences are the same if and only if (1) they are both nonzero
null values or (2) their values are the same. Table 1, row (d)
shows the modified VM implementation.

We optimize this test for the common case: non-null ref-
erences. The instrumentation first tests if the first reference is
null; if so, it jumps to an out-of-line basic block that checks
the second reference. Otherwise, the common case performs
a simple check for reference equality, which is sufficient
since both references are now known to be non-null.

2.4 Implementation in Jikes RVM

We implement origin tracking in Jikes RVM, a high-perfor-
mance Java-in-Java virtual machine [5, 16]. Our imple-
mentation is publicly available on the Jikes RVM Research
Archive [17].

Jikes RVM uses two dynamic compilers. When a method
first executes, Jikes RVM compiles it with a non-optimizing,
baseline compiler. As a method becomes hotter, Jikes RVM
recompiles it with an optimizing compiler at successively
higher levels of optimization. We modify both compilers to
redefine Java operations to support piggybacking of origins
on null values.

Our implementation stores program locations instead of
zero (Table 1, rows (a) and (b)) only in application code, not
in VM code or in the Java standard libraries. This choice re-
flects developers’ overriding interest in source locationsin
their application code. Since the VM is not implemented en-
tirely in pure Java—it needs C-style memory access for low-
level runtime features and garbage collection—generating
nonzero values for null in the VM and libraries would con-
fuse parts of the VM that assume null is zero. Since null ref-
erences generated by the application sometimes make their
way into the VM and libraries, our implementation modifies
all reference comparisons to handle nonzero null references
(Table 1, rows (c) and (d)) in the application, libraries, and
VM.

Some VMs including Jikes RVM catch null pointer ex-
ceptions using a hardware trap handler: since low memory
is protected, dereferencing a null pointer generates the sig-
nal SIGSEGV. The VM’s custom hardware trap handler de-
tects this signal and returns control to the VM, which throws
a null pointer exception. The origin tracking implementa-
tion protects the address range0x00000000–0x07ffffff
so null dereferences will result in a trap. For origin tracking,
we modify the trap handler to identify and record the cul-
prit base address, which is the value of the null reference.

When control is returned to the VM, it decodes the value
into a program location and reports it together with the null
pointer exception. VMs that use explicit null checks to de-
tect null pointer exceptions could simply use modified null
checks as described in Section 2.3.

The Java Native Interface (JNI) communicates with un-
managed languages such as C and C++, allowing unman-
aged code to access Java objects. The unmanaged code as-
sumes that null is zero. We therefore modify the VM to iden-
tify null parameters passed to JNI methods, and to replace
them with zero. This approach loses origin information for
these parameters but ensures correct execution.

3. Finding and Fixing Bugs in Java Programs
This section describes a case study using origin tracking to
identify the causes of 12 failures in eight programs. These
results are summarized in Table 2, which contains the lines
of code measured with the Unixwc command; whether the
origin was identified; whether the origin was identifiable
trivially; and how useful we found the origin report (these
criteria are explained in detail later in this section). We
describe three of the most interesting cases (Cases 1, 2, and
3) in detail below and the other nine in the appendix. In
summary, our experience showed:

• The usefulness of origin information depends heavily on
the complexity of the underlying defect. In some cases, it
is critical for diagnosing a bug. Given the extremely low
cost of origin tracking (see Section 4), there is little rea-
son not to provide this extra information, which speeds
debugging even when a defect is relatively trivial.

• Bug reports often do not contain sufficient information
for developers to diagnose or reproduce a bug. Origin
tracking provides extra information for users to put in bug
reports in addition to a stack trace.

• It is not always clear whether the defect lies in the code
producing the null value, or in the code dereferencing it
(e.g., the dereferencing code should add a null check).
A stack trace alone only provides information about the
dereferencing code. Origin tracking allows programmers
to consider both options when formulating a bug fix.

• Null pointer exceptions often involve a null value flow-
ing between different software components, such as ap-
plication code and library code. Therefore, even when the
origin and dereference occur close together it can be dif-
ficult to evaluate the failure without a full understanding
of both components. For example, a programmer might
trigger a null pointer exception in a library method by
passing it an object with a field that is unexpectedly null.
Origin tracking indicates which null store in the applica-
tion code is responsible, without requiring extra knowl-
edge or source code for the library.

Case Program Lines Exception description Origin? Trivial? Useful?
1 Mckoi SQL DB 94,681 Access closed connection Yes Nontrivial Definitely useful
2 FreeMarker 64,442 JUnit test crashes unexpectedly Yes Nontrivial Definitely useful
3 JFreeChart 223,869 Plot without x-axis Yes Nontrivial Definitely useful
4 JRefactory 231,338 Invalid class name Yes Nontrivial Definitely useful
5 Eclipse 2,425,709 Malformed XML document Yes Nontrivial Most likely useful
6 Checkstyle 47,871 Empty default case Yes Nontrivial Most likely useful
7 JODE 44,937 Exception decompiling class Yes Nontrivial Most likely useful
8 Jython 144,739 Use built-in class as variable Yes Nontrivial Potentially useful
9 JFreeChart 223,869 Stacked XY plot with lines Yes Somewhatnontrivial Marginally useful
10 Jython 144,739 Problem accessingdoc attribute Yes Somewhat nontrivial Marginally useful
11 JRefactory 231,338 Package and import on same line Yes Trivial Not useful
12 Eclipse 2,425,709 Close Eclipse while deleting project Yes Trivial Not useful

Table 2. The diagnostic utility of origins returned by origin tracking in Java. Cases 1, 2, and 3 are described in detail in
Section 3; the rest are described in the appendix. Bug repositories are on SourceForge [32] except for Eclipse [10] and Mckoi
SQL Database [24].

3.1 Evaluation Criteria

For each error, we evaluate how well origin tracking per-
forms using three criteria:

Origin identification. Does origin tracking correctly return
the method and line number that assigned the null respon-
sible for the exception?

Triviality. Is the stack trace alone, along with the source
code, sufficient to identify the origin? In 8 of 12 null
pointer exceptions, the origin is not easy to find via in-
spection of the source location identified by the stack
trace.

Usefulness.Does knowing the origin help with understand-
ing and fixing the defect? Although we are not the devel-
opers of these programs, we examined the source code
and also looked at bug fixes when available. We believe
that the origin report is not useful or marginally useful
for one-third of the cases; potentially or most likely use-
ful for another third; and most likely or definitely useful
for the remaining third of the cases.

3.2 Origin Tracking Case Studies

We now describe three bugs that highlight origin tracking’s
role in discovering the program defect.

Case 1: Mckoi SQL Database: Access Closed Connection
The first case highlights an important benefit of origin track-
ing: it identifies a null store far away from the point of failure
(possibly in another thread). The location of the store iden-
tifies

The bug report comes from a user’s message on the mail-
ing list for Mckoi SQL Database version 0.93, a database
management system for Java (Message 02079). The user
reports that the database throws a null pointer exception
when the user’s code attempts to execute a query. The
bug report contains only the statementdbStatement.-

executeUpdate(dbQuery); and a stack trace, so we use
information from the developer’s responses to construct a

test case. Our code artificially induces the failure but cap-
tures the essence of the problem.

The stack trace is shown in Figure 1(a). This information
presents two problems for the application developer. First,
the failure is in the library code, so it cannot be easily
debugged. Second, it indicates simply that the query failed,
with no error message or exception indicating why.

Our origin information, shown in Figure 1(b), reveals the
reason for the failure: the null store occurred inAbstract-

JDBCDatabaseInterface.internalDispose() at line
298. This method is part of closing a connection; line 298
assigns null to the connection object reference. The cause of
the failure is that the query attempts to use a connection that
has already been closed.

The origin information may be useful to both the appli-
cation user and the database library developers. Users can
probably guess from the name of the methodAbstract-

java.lang.NullPointerException:

at com.mckoi.database.jdbcserver.JDBCDatabaseInterface.

execQuery():213

at com.mckoi.database.jdbc.MConnection.

executeQuery():348

at com.mckoi.database.jdbc.MStatement.

executeQuery():110

at com.mckoi.database.jdbc.MStatement.

executeQuery():127

at Test.main():48

(a)

Origin:

com.mckoi.database.jdbcserver.

AbstractJDBCDatabaseInterface.internalDispose():298

(b)

Figure 1. Case 1: VM output for Mckoi SQL Database bug.
(a) The stack trace shows the query failed inside the library.
(b) Origin tracking suggests that the failure is due to a closed
connection.

java.lang.NullPointerException:

at freemarker.template.WrappingTemplateModel.wrap():131

at freemarker.template.SimpleHash.get():197

at freemarker.core.Environment.getVariable():959

at freemarker.core.Identifier._getAsTemplateModel():70

at freemarker.core.Expression.getAsTemplateModel():89

...

at junit.textui.TestRunner.main():138

(a)

Origin: freemarker.template.DefaultObjectWrapper.instance

(b)

Figure 2. Case 2: VM output for FreeMarker bug. (a) The
stack trace shows the fault location. (b) The null’s origin is
an uninitialized static field.

java.lang.NullPointerException:

at org.jfree.chart.plot.FastScatterPlot.draw():447

at Bug2.test():16

at Bug2.main():9

(a)

Origin: Bug2.test():13

(b)

Figure 3. Case 3: VM output for JFreeChart bug. (a) The
stack trace shows a failure inside the library. (b) Origin
tracking identifies the error is caused by a null from user
code.

JDBCDatabaseInterface.internalDispose() that the
problem is a closed connection, and can plan for this pos-
sibility in their application logic. The developers can also
modify theexecQuery()method to check for a closed con-
nection and to throw a usefulSQLException that reports the
reason, as noted in an existing response on the mailing list.

Case 2: FreeMarker: JUnit Test Crashes Unexpectedly
The second case illustrates how origin tracking helps diag-
nose errors when the null reference passes from variable to
variable by assignment. The case is also interesting because
at first glance the initial assignment appears to be non-null,
but it is in fact null because of a static initialization ordering
issue.

FreeMarker 2.3.4 is a Java library that generates output
such as HTML and source code using user-defined tem-
plates. We reproduced an exception in the library using test
code posted by a user (Bug 1354173). Figure 2 shows the
exception stack trace.

The exception occurs at line 131 ofwrap(), which tries
to dereferencedefaultObjectWrapper,which is null. Pre-
viously,defaultObjectWrapperwas assigned the value of
the static, final fieldDefaultObjectWrapper.instance.
At first glance, it appears thatDefaultObjectWrapper-
.instance is properly initialized:

static final DefaultObjectWrapper instance =

new DefaultObjectWrapper();

However, due to a circular initialization dependency be-
tween WrappingTemplateModel and DefaultObject-

Wrapper, instance is in fact initialized to null. Origin
tracking helps diagnose this error by reporting the unini-
tialized static fieldinstance as the origin of the offending
null. The origin should be quite useful for diagnosing the
bug since (1) the null passes through a variable, and (2) it
is not intuitive that the original assignment assigns null.A
responder to the bug report also came to the conclusion that
the exception is a result of static class initialization ordering,
but to our knowledge it has not been fixed in any version of
FreeMarker.

Case 3: JFreeChart: Plot Without X-Axis This case in-
volves a small test program provided by a bug reporter that
causes a null pointer exception inside JFreeChart 1.0.2, a
graphing library (Bug 1593150). This case, like the first case
in this section, represents an important class of failures for
which origin tracking is useful: the failure is induced by the
application, but since it occurs inside the library the pro-
grammer has no easy way to interpret the stack trace or to
debug the library code.

The following is code provided by the user, annotated
with line numbers:

12: float[][] data = {{1.0f,2.0f},{3.0f,4.0f}};

13: FastScatterPlot plot =

new FastScatterPlot(data, null, null);

14: Button aButton = new Button();

15: Graphics2D graphics =

(Graphics2D)(aButton.getGraphics());

16: plot.draw(graphics, new Rectangle2D.Float(),

new Point2D.Float(), null, null);

Figure 3(a) shows the exception stack trace. The method
FastScatterPlot.draw(), called from line 16 of the user
code, throws a null pointer exception. This stack trace is not
very helpful to the library user, who may not have access to
or be familiar with the JFreeChart source code.

On the other hand, origin tracking provides information
that is directly useful to the user: the origin is line 13 of the
user’stest() (Figure 3). The user can quickly understand
that the exception occurs because the code passes null as the
x-axis parameter to theFastScatterPlot constructor.

While the origin allows a frustrated user to modify his or
her code immediately, it also suggests a better long-term fix:
for JFreeChart to return a helpful error message. The devel-
opers diagnosed this bug separate from us, and their solution,
implemented in version 1.0.3, causes the constructor to fail
with an error message if the x-axis parameter is null.

Remaining Cases The appendix contains details of the
remaining nine bugs.

4. Java Run-Time Performance
This section evaluates the performance impact of piggyback-
ing origins on null values in Java programs.

4.1 Methodology

Execution For our Java experiments we run Jikes RVM
in two different just-in-time compilation modes:adaptive
mode andreplaymode. The adaptive mode results show the
overall effect of origin tracking in a deployed setting, while
the replay mode results allow us to measure the individual
performance factors.

In adaptive compilation mode, which is the default, Jikes
RVM dynamically identifies frequently executed methods
and recompiles them at higher optimization levels. Many
JVMs use this strategy, and thus the adaptive mode results
represent the expected bottom-line cost of using origin track-
ing in deployed software.

The way adaptive mode is implemented, however, makes
it difficult to break out the components of performance over-
head: how much is due to the extra cost ofcompilingthe ori-
gin tracking code, and how much is due toexecutingthe ori-
gin tracking code. The adaptive compiler uses timer-based
sampling to make compilation decisions, and therefore the
additional cost of value piggybacking alters these decisions,
making it difficult to compare runs with and without origin
tracking.

To address this problem, we usereplay compilation
methodology, which is deterministic. Replay compilation
forces Jikes RVM to compile the same methods in the same
order at the same point in execution on different executions
and thus avoids variability due to the compiler.

Replay compilation usesadvice filesproduced by a previ-
ous well-performing adaptive run (best of five). The advice
files specify (1) the optimization level for compiling each
method, (2) the dynamic call graph profile, and (3) the edge
profile. Fixing these inputs, we execute two consecutive it-
erations of the application. During the first iteration, Jikes
RVM optimizes code using the advice files. The second it-
eration executes only the application with a realistic mix of
optimized code.

We execute each benchmark in a high-performance con-
figuration: we use a heap size fixed at three times the min-
imum necessary for that benchmark to run using a gener-
ational mark-sweep garbage collector. For replay compila-
tion, we report the minimum run-time of five trials since
it represents the run least perturbed by external effects. For
adaptive runs, we perform 25 trials because of high variabil-
ity and report the median to discount outliers.

Benchmarks We evaluate the performance of origin track-
ing using the DaCapo benchmarks (version 2006-10), SPEC
JVM98, and a fixed-workload version of SPEC JBB2000
calledpseudojbb [8, 33, 34]. We omitxalan from replay
experiments because we could not get it to run correctly with
replay compilation, with or without origin tracking.

We perturb the methodology of several replay experi-
ments that otherwise execute incorrectly; the determinism
of replay means exposed VM bugs often occur consistently.
We executepmd with 3.1 times the minimum heap instead
of 3.0 because 3.0 exposes a VM bug. For the same rea-
son, we executechartwith a generational copying collector
andpmdwith a full-heap mark-sweep collector (these bench-
marks would not execute correctly in any heap size with a
generational mark-sweep collector).

Platform We perform our experiments on a 3.6 GHz Pen-
tium 4 with a 64-byte L1 and L2 cache line size, a 16KB 8-
way set associative L1 data cache, a 12Kµops L1 instruction
trace cache, a 2MB unified 8-way set associative L2 on-chip
cache, and 2GB main memory, running Linux 2.6.12.

4.2 Space Overhead

Except for one ID per application method, origin tracking
adds no space overhead because it uses value piggybacking
to store program locationsin placeof null references.

4.3 Execution Time Overhead

Figure 4 shows the application execution overhead of ori-
gin tracking. We report the second run of replay methodol-
ogy, during which only the application executes. We present
several configurations that represent various origin tracking
functionality levels (presented in order of monotonicallyin-
creasing functionality):

• Baseis application execution time. All bars are normal-
ized toBase.

• Simple checksincludes all origin tracking functionality
except for two key but relatively costly components:
(1) instrumentation to support general reference compar-
isons and (2) initialization of nulls to program locations
at object allocation time.Simple checksadds 1% over-
head on average.

• Ref compareadds support for general reference compar-
isons toSimple checks. Ref compareadds 1% overSimple
checks, for a total of about 2% on average.

• Origin trackingadds initialization of nulls at object allo-
cation time toRef compare, and this configuration con-
tains all functionality needed to track and report origins
for null pointer exceptions.Origin trackingadds 1% over
Ref compare, for a total of 3% on average.

4.4 Compilation Overhead

Origin tracking increases compilation time because it adds
instrumentation to the application that redefines reference
comparison and sets null references at object allocation. Fig-
ure 5 shows the overhead origin tracking adds to compilation
for the same configurations as in Figure 4. We determine
compilation time by measuring time spent in the compiler
during the first run of replay compilation, which compiles

antlr
bloat

chart
eclipse

fop hsqldb
jython

luindex

lusearch

pmd
pseudojbb

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

geomean
w/o bloat

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 a
pp

lic
at

io
n

tim
e

Base
Simple checks
Ref compare
Origin tracking

Figure 4. Application execution time overhead of origin tracking.

antlr
bloat

chart
eclipse

fop hsqldb
jython

luindex

lusearch

pmd
pseudojbb

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

geomean

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 c
om

pi
la

tio
n

tim
e

Base
Simple checks
Ref compare
Origin tracking

Figure 5. Compilation time overhead of origin tracking.

antlr
bloat

chart
eclipse

fop hsqldb
jython

luindex

lusearch

pmd
xalan

pseudojbb

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

geomean
w/o chart

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Base
Simple checks
Ref compare
Origin tracking

Figure 6. Adaptive methodology performance of origin tracking. The tall bars are overall execution time, while the sub-
bars are the fraction of time spent in compilation.

and executes the application. Origin tracking adds 10% com-
pilation overhead on average and 19% at most (pseudojbb).
Compilation time, however, is a very small fraction of over-
all execution time (see below).

4.5 Overall Run-Time Overhead

Finally, we use adaptive methodology to measure the overall
performance effect of origin tracking. Figure 6 shows com-
bined application and compilation overhead for the same ori-
gin tracking configurations as in Figures 4 and 5. The bars
are overall execution time, and the sub-bars are the fraction
of time spent compiling. On average, origin tracking adds
4% to overall execution time. Compilation time is a small
fraction of overall time: it increases from 0.043 inBaseto
0.051 inOrigin tracking. Compilation time varies consider-
ably for single benchmarks, presumably because of the in-
terplay between compilation and application execution.

5. Undefined Variables in C & C++ Programs
In this section, we present another application of value
piggybacking: tracking the origins of undefined values in
C, C++, and Fortran programs. We first describeMem-
check [31], a tool built with Valgrind [26] that validates
memory usage in programs. We then describe how we mod-
ify Memcheck to piggyback origins on undefined values.

Our results show that origin tracking adds only negligible
overhead to Memcheck, although Memcheck alone slows
down execution on average by a factor of 28. Memcheck
reports 147 undefined value warnings on our test suite of 20
C, and C++, and Fortran programs. Of these warnings, 47
are for 32-bit values (in which it is possible to fit a program
location), and our enhanced MemCheck reports the origin
for 34 (72%) of these warnings. Memcheck cannot report
origins for the remaining warnings since they involve values
smaller than 32 bits, so they cannot fit a program location.

Our version of Memcheck is publicly available as a
branch in the Valgrind source repository:

svn://svn.valgrind.org/valgrind/branches/ORIGIN_TRACKING

5.1 Memcheck

Memcheck [31] is implemented in Valgrind [26], a frame-
work for heavyweight dynamic binary instrumentation.
Memcheck works on programs written in any language, but
it is most useful for those written in C and C++ in which
memory errors are common. Memcheck detects memory-
related defects such as bad or repeated frees of heap blocks
(blocks allocated with malloc, new, or new[]), memory
leaks, heap buffer overflows, and wild reads and writes. It
detects these defects by recording two kinds of metadata: (a)
heap block information such as size, location, and a stack
trace for its allocation point, and (b) a singleA bit (‘A’ for
“addressability”) per memory byte, which indicates if the
byte is legally accessible.

Memcheck detects dangerous uses of undefined values
by shadowing every register and memory byte with 8V bits
(‘V’ for “validity”) that indicate if the value bits are defined
(i.e., initialized, or derived from other defined values). It up-
dates and propagates these bits through memory and regis-
ters in parallel with normal computation. To minimize false
positives Memcheck only warns users about uses of unde-
fined values that can change the program’s behavior. These
uses fall into four cases.

1. The program uses an undefined value in a conditional
branch or conditional move, potentially changing the pro-
gram’s control flow.

2. The program uses an undefined value as a branch target
address, potentially changing the program’s control flow.

3. The program provides an undefined value as an input to
a system call, potentially changing the program’s side
effects.

4. The program uses an undefined value as the address in
a load or store, potentially causing an incorrect value to
be used, which could subsequently change the program’s
control flow or side effects.

In contrast, Memcheck does not warn about benign uses,
such as copying or operating on undefined values, because
these operations are not inherently erroneous and are very
common. For example, programs copy not-yet-initialized
fields in C structs and copy empty bytes in structs due to
padding between fields. This delayed reporting avoids many
false-positive warnings. For example, the simplest “hello
world” program causes hundreds of false positive errors with
eager reporting.

For undefined inputs to system calls, Memcheck already
gives useful origin information since the value is usually
in a memory block; for example, the undefined value may
be in a filename string argument. However, for undefined
conditions, load/store addresses, and branch target address,
the undefined value is in a register, and Memcheck has no
useful origin information for it. Users of Memcheck com-
plain about this case enough that it warranted an entry in
Valgrind’s frequently asked questions (FAQ) file (startingin
version 3.2.2) [26].

5.2 Memcheck Implementation Details

This section describes how we modify Memcheck to piggy-
back origins on undefined values. Since the values are unde-
fined, we can assign them whatever value we choose. First
we present how our implementation encodes program loca-
tions, then how it redefines program operations to accom-
modate piggybacked undefined values, and finally how it re-
ports origins when an undefined value is used in a potentially
harmful way.

Representing Origins Memcheck storescontext-sensitive
origins for heap-allocated variables andcontext-insensitive
origins for stack-allocated variables.

Memcheck already computes and stores a stack trace for
each heap block at allocation. The stack trace includes the
allocation site and its dynamic calling context. Memcheck
stores stack traces in a calling context tree [4] and uses the
32-bit address of this data structure as theorigin key, i.e.,
a value from which it can identify an origin. Our modified
Memcheck paints each newly allocated heap block with re-
peated copies of the origin key. The exception is heap blocks
allocated withcalloc, which must be initialized with ze-
roes.

Memcheck takes a similar but lighter-weight approach to
undefined values allocated on thestack. Because stack al-
locations are so frequent, recording a stack trace for every
one would be expensive. Instead, Memcheck records a static
(context-insensitive) code location for each stack allocation,
which it it determines at instrumentation time for efficiency.
When the stack allocation occurs, our modified implemen-
tation paints the memory block with the appropriate origin
key.

Modifying Program Operations No changes are required
for copying or for operations that involve normal program
values. Nor are any changes required to Memcheck’s shadow
values operations. Thanks to value piggybacking, the origin
values get propagated for free. Unlike the Java implementa-
tion, origins can be lost if certain operations modify unde-
fined values. For example, if an undefined value holding an
origin key is added to a nonzero defined value, the resulting
value will be undefined, but its origin information has been
lost.

Reporting Origins To report the origins of undefined value
warnings, we modify Memcheck at undefined value warning
checks to read the origin key from the undefined value and
look up the corresponding program location. If the origin
key exists, Memcheck reports the location as the likely ori-
gin for the undefined value. Conditional branches and moves
complicate identifying the origin key since their input is a
single-bit condition. We need to search backwards to find
one or more 32-bit values from which the undefined con-
dition bit was derived. At instrumentation time, our imple-
mentation performs a backwards dataflow trace to find all
32-bit values that are ancestors of the condition bit. For ex-
ample, if the program compares two 32-bit values and then
uses the result as a condition, then each of the values is re-
ported as a possible origin if it is undefined at run time (de-
termined by examining the V bits when the warning is is-
sued). The backwards searching is limited because Valgrind
instruments code in small chunks (superblocks) that are usu-
ally 3–50 instructions in length. This limitation can degrade
the accuracy of the origin report.

Figure 7 shows an example undefined value warning that
includes an origin. The defect involves allocating a heap

Conditional jump or move depends on uninitialised

value(s)

at 0x8048439: g (a.c:20)

by 0x8048464: f (a.c:25)

by 0x80484A5: main (a.c:34)

Uninitialised value has possible origin 1

at 0x40045D5: malloc (vg_replace_malloc.c:207)

by 0x804848F: main (a.c:32)

Figure 7. A Memcheck undefined value warning involving
an origin.

block in main(), passing an uninitialized 32-bit value to
a functionf(), which then passes it tog(), which then
compares the value to another in an if-then-else. The first
half of the warning is what is printed by Memcheck without
origin tracking. The second half of the warning is added
by origin tracking: it identifies the origin—the original heap
allocation point.

5.3 Discussion

We discuss here some limitations of origin tracking due to
Memcheck and the C and C++ programming model, poten-
tial solutions, and related topics.

Missed Origins Due to Small Values The biggest limita-
tion of origin tracking in Memcheck is that it cannot track
program locations well in fewer than 32 bits, and therefore
it does not report origins for undefined value defects involv-
ing 8- or 16-bit data. Sixteen bits is just not enough to store
a code location for even moderately large programs. This
problem does not affect the Java implementation because
Java null pointers are always word-sized.

To address this problem, we tried performing “partial
matching”: reporting every origin for which the 8 or 16 bits
in the undefined value matched an 8- or 16-bit fragment of
an origin key. But this approach resulted in many incorrect
matches, particularly in the 8-bit case. Unfortunately, the 8-
bit and 16-bit cases occur often (Section 5.4).

Another possible approach is to store less precise infor-
mation, such as a file or method identifier in these small
values. But this would result in less information for the 32-
bit case as well—we cannot tell ahead of time which parts
of a memory block will be used as 32-bit values and which
as 8- or 16-bit values. Alternatively, it would be possible to
execute the program again with information from the first
run to narrow down the number of matches, although this
would be less convenient for programmers. A complete so-
lution would store the origins separately, as is done for theV
bits, rather than use piggybacking, but this solution requires
extra space and time, losing the advantages of piggybacking.

Missed Origins Due to Other Reasons Origins can fail to
be identified in the 32-bit case for two reasons. First, if an
undefined value is modified, it will no longer match its ori-
gin key. We could prevent modifications of origin values, but
the extra checks required for almost every operation would

be expensive. We tried unsuccessfully to perform “fuzzier
matching”: requiring that only three of the four bytes in the
undefined value matched the origin key. Second, if an un-
modified, undefined 32-bit value is loaded via an unaligned
load, the undefined value will not match a key because the
bytes will be out of order. Again, fuzzier matching could
help: if there are no matches, Memcheck could try rotat-
ing the bytes of the value before matching. We find that un-
aligned accesses are not common enough to warrant this ad-
dition.

Incorrect Origins There is a small chance that a 32-bit un-
defined value that has been modified may match a different
origin key, giving the wrong origin. For this reason we al-
ways describe an origin as a “possible origin” in the warning
messages.

Changing Program Behavior Assigning origin keys to
undefined memory, instead of the often fortuitously found
zero, may change a program’sbehavior. However, this is ac-
ceptable as it does not change the program’ssemantics—the
changes are within an envelope of behavior that is already
undefined. Also, in this setting, we assume the programmer
is trying to identify defects, and is fixing defects in the order
Memcheck identifies them. Execution becomes increasingly
unreliable as more errors occur.

64-Bit Machines The technique extends simply to 64-bit
machines. It is worthwhile to keep the origin keys 32-bits,
because integers on 64-bit machines are 32-bits. We can ei-
ther use partial matching of 32-bit undefined values against
64-bit origin keys, or just use 32-bit origin keys (e.g., asso-
ciate a random 32-bit key with each stack trace instead of
using the address of the stack trace data structure).

5.4 Accuracy of Origin Tracking in Memcheck

To determine the accuracy of Memcheck’s origin tracking,
we found 20 C, C++, and Fortran programs for which the
unaltered version of Memcheck issues at least one undefined
value warning. Three of these (facerec, parser, twolf) are
from the SPEC CPU2000 suite. The other 17 were found
just by trying programs present on a Linux machine more or
less at random. Undefined value errors are common enough
that we found the 17 programs in about two hours.

Table 3 summarizes the results. For these programs, the
unaltered Memcheck issues 147 undefined value warnings
that lack origin information. Memcheck does not reissue
warnings that look similar to previous ones in order to avoid
uninteresting duplication of warnings. Nonetheless, it ispos-
sible that a single undefined value defect can result in more
than one warning. Of the 147 undefined value warnings is-
sued by Memcheck, 100 involve 8-bit or 16-bit undefined
values, for which our technique cannot identify origins. Two
programs, ps2pdf and xpdf, account for 57 of these small
value warnings. We suspect that many of these are 8-bit
warnings related to defects involving strings.

Program Total 32-bit values <32-bit
(static instrs) Origin None None

dvips (42K) 1 0 0 1
facerec (38K) 1 1 0 0
firefox (1770K) 6 0 0 6
glibc (12K) 8 8 0 0
ispell (82K) 1 1 0 0
kanagram (401K) 8 0 1 7
kbounce (453K) 14 0 5 9
kpdf (612K) 1 1 0 0
ooffice (2967K) 1 0 0 1
parser (41K) 2 0 0 2
pdf2ps (166K) 13 5 0 8
ps2ascii (231K) 4 4 0 0
ps2pdf (150K) 24 1 0 23
pstree (19K) 3 0 0 3
python (81K) 13 10 3 0
twolf (52K) 2 2 0 0
vim (76K) 2 0 0 2
xfig (135K) 4 0 2 2
xfontsel (90K) 2 0 0 2
xpdf (230K) 37 1 2 34

Total 147 34 13 100

Table 3. Undefined value warnings and Memcheck’s
success at identifying their origins.

Of the 47 undefined value warnings involving 32-bit val-
ues for which Memcheck could possibly report origins, it
reports 34 (72%). The 13 cases where it failed to identify
an origin must involve unaligned memory or modified un-
defined values, as discussed in Section 5.3. We tried some
partial (24-bit) and fuzzy (rotated) value matching in an at-
tempt to identify more origins, but only a single extra origin
was identified, for python.

We have not evaluated the usefulness of the Memcheck
origin reports since we focused in this paper on the Java
implementation, but we suspect undefined value origins will
help programmers since they tell programmers something
they would otherwise need to figure out manually.

5.5 Overhead of Origin Tracking in Memcheck

To measure the overhead of origin tracking in Memcheck,
we run SPEC CPU2000 benchmarks (except for galgel,
which gfortran failed to compile). We use the training in-
puts, which are smaller than the reference inputs, but the
experimental runs took more than 24 hours with training
inputs alone, and we believe the results would not give no-
ticeably different results in this case. Prior, unrelated experi-
ments with Memcheck also found that using the larger inputs
made made minimal differences to timing results. The test
machine was a 2.6GHz Pentium 4 (Northwood) with 2GB
RAM and a 512KB L2 cache. We implemented origin track-
ing in a pre-3.3.0 development version of Memcheck.

Figure 8 shows the results of measuring Memcheck with
and without origin tracking. Memcheck alone slows pro-

am
m

p
applu
apsi
art
bzip2
crafty
eon
equake
facerec
fm

a3d
gap
gcc
gzip
lucas
m

cf
m

esa
m

grid
parser
perlbm

k
sixtrack
sw

im
tw

olf
vortex
vpr
w

upw
ise

geom
ean

0

10

20

30

40

50

60

70

80

90

100

S
lo

w
do

w
n

Base
Origin tracking

Figure 8. Memcheck’s slowdown without and with ori-
gin tracking.

grams down by a factor of 28x (comparable to prior re-
sults [31]). The main cost of origin tracking is the painting
of heap and stack blocks with the origin keys. However, the
overall performance impact of origin tracking is negligible.
At worst, Memcheck with origin tracking worsens the slow-
down factor for eon from 75.7x to 85.9x, and at best it im-
proves the slow-down factor for gcc from 63.0x to 57.3x.
This level of variation is likely due to factors such as differ-
ent cache behavior caused by the extra writes to uninitialized
memory blocks.

6. Related Work
Previous work related to origin tracking and unusable val-
ues can be divided into three categories: (a) dynamic ap-
proaches that help diagnose bugs when they occur, (b) static
approaches that detect bugs before the program is run, and
(c) language design approaches which reduce or eliminate
the chance of such bugs occurring altogether.

Dynamic Approaches Origin tracking can be considered a
special case ofdynamic program slicing[1, 25]. Dynamic
slices include most or all statements that affect a value via
control or data-dependence. Dynamic slicing provides infor-
mation for any value, not just unusable values, and dynamic
slicing provides all statements affecting a value, not justthe
value’s origin. However, dynamic slicing is very expensive,
e.g., 10-100X slowdowns are typical, while origin tracking

uses value piggybacking to make it efficient enough for de-
ployed software.

TraceBackrecords a fixed amount of control flow (similar
to dynamic slicing but without dataflow) during execution
and reports it in the event of a crash [6]. Traceback provides
control flow information leading up to the fault, while origin
tracking provides the data-flow origin of the faulting value.

Purify and Memcheck detects a similar class of errors.
Purify eagerly reports some undefined value as soon as they
are loaded from memory. These operations are closer to the
undefined values’ origins, but eager reporting can cause false
positives. Although, Purify prunes these reports by using
static analysis to identify undefined values that definitely
do not cause errors. Memcheck instead delays reporting of
undefined values to the point where they change program
behavior, which yields fewer false positives and together
with origin tracking is more accurate.

TaintCheckis a security tool that tracks which values
are tainted (i.e., from untrusted sources), and detects if they
are used in dangerous ways [27]. TaintCheck shadows each
byte, recording for each tainted value: the system call from
which it originated, a stack trace, and the original tainted
value. Thus TaintCheck uses a form of explicit origin track-
ing that requires both extra space and time (extra operations
are required to propagate the taint values). Value piggyback-
ing would not be appropriate for TaintCheck because tainted
values cannot have other values piggybacked onto them as
they do not have spare bits.

Saber is a memory-checking tool that stores a special
one bitcanary valuein undefined values [20], which indi-
catesundefinedness. Our Memcheck implementation instead
notes defined/undefined separately in its V bits and stores
more complex information (origins) in the undefined values.

Zhang et al. improve dynamic slicing by identifyingomis-
sion errors, statements that lead to an error because they did
not execute [36]. Some undefined value errors are the re-
sult of omission errors, but our origin tracking approach re-
ports only statements that executed, rather than statements
that should have executed but did not.

Recent novel work on anomaly-based bug detection uses
multiple program runs to identify program behavior features
correlated with errors [13, 21, 23, 37]. Origin tracking is
complementary to these approaches since they detect the
causes of many types of bugs besides unusable value errors,
while origin tracking may be able to find bug causes not de-
tected by invariant violations. Anomaly-based bug detection
adds overhead too high for deployed use [13] or requires
multiple runs to detect bug causes [21, 23, 37], whereas our
Java implementation of origin tracking works efficiently ina
single deployed run.

An alternative to detecting bugs is to tolerate them auto-
matically at run time [7, 29, 30]. For example,Rxrolls back
to a previous state and tries to re-execute in a different en-
vironment [29].DieHard uses random memory allocation,

padding, and redundancy to probabilistically decrease the
chances of errors [7]. These approaches are most suitable for
pointer and memory corruption errors, rather than semantic
errors such as undefined values.

Static Analysis Previous bug detection work includes a
number of static analysis algorithms for detecting bugs.
Pattern-based systems such as PMD are effective at identify-
ing potential null dereferences but lack the dataflow analysis
often needed to identify the reason for the bug [28]. Find-
Bugs uses dataflow analysis to identify null dereferences and
includes a notion of confidence to reduce the false positive
rate [14, 15]. ESC/Java uses a theorem prover to check that
pointer dereferences are non-null [11]. Both FindBugs and
ESC/Java are primarily intraprocedural, and rely on user
annotations to eliminate false positives due to method pa-
rameters and return values. JLint and Metal include an in-
terprocedural component to track the states of input param-
eters [12, 18].

The advantage of static analysis is that it detects bugs
without having to execute the buggy code. Unfortunately,
static tools suffer from two significant limitations. First, they
often produce many false positives because they rely on
coarse approximations of dynamic program behavior, since
context and flow-sensitive analysis is too expensive for large
programs. Second, few if any build a model of the heap pre-
cise enough to track null values through loads and stores.
In contrast, our origin tracking approach reports information
only for errors that occur, and tracks the origin through ar-
bitrarily long and complex code sequences, including loads
and stores to the heap, without losing precision.

Several static bug detectors, including PMD, FindBugs,
and Metal, are made intentionallyunsoundto reduce the
false positive rate. This choice, however, allows code with
bugs to pass silently through the system and fail at run-time.
Origin tracking complements these systems: it can diagnose
the more complex bugs that they miss.

Language Design The unusable value bugs discussed in
this paper are a consequence of two particular language
features: (a) pointer values are overloaded to represent a
pointer tosomething(non-null) or a pointer tonothing(null),
and (b) the declaration of a variable is separate from its
initialization and the assignment can be easily forgotten.An
alternative to detecting these bugs is to prevent them from
happening by choosing a language that does not have these
features.

Java, Chalin and James [9] propose extending Java with
“never null” pointer types, which are the default, and requir-
ing “possibly null” pointers to be annotated specially. This
feature makes it harder to forget to initialize pointers, but as
long as null pointers are possible, the problem can still occur.

Functional languages avoid both problems. First, vari-
ables are only introduced when they are bound to values,
so it is impossible for a variable to be uninitialized. Second,
they use explicit types to represent “nothing,” allowing the

type checker to make sure that programs handle these cases.
However, it is still possible for variables to have unexpected
values, causing a program to fail at run-time.

7. Conclusions
Developers need all the help they can get when debugging.
We present a lightweight approach for tracking the origins
of null pointers in Java programs and undefined values in
Memcheck. The key to origin tracking’s efficiency is that
program locations are storedin placeof null and undefined
values, avoiding space overhead and significant time over-
head since the locations propagate via normal program data
flow. The Memcheck implementation of origin tracking adds
no overhead, on average, to provide origin information at
testing time, and finds origins for 72% of the 32-bit unde-
fined value errors. The Java implementation adds just 4% to
overall execution time. Origins are useful for 7 of 12 real
bugs, and the toughest bugs are those helped most by ori-
gin knowledge. Given its minimal footprint and productivity
benefits, origin tracking is ideal for commercial VMs where
it can enhance debugging in existing and future deployed
software.

Acknowledgments
We would like to thank Julian Seward for many helpful dis-
cussions about the Memcheck implementation; Jason Davis
and Ben Wiedermann for testing out our implementation of
origin tracking; Ben Wiedermann for help understanding the
Jython source; and Simha Sethumadhavan, Julian Seward,
and the anonymous reviewers for valuable feedback about
the paper text.

Appendix
This appendix describes the exceptions from Table 2 not
covered in Section 3.

Case 4: JRefactory: Invalid Class Name This case shows
how origin tracking helps diagnose an improperly initialized
reference that is used later and elsewhere in the program.
We triggered a previously unknown failure in JRefactory
2.9.18 by accident while trying to reproduce Case 11’s fail-
ure. Perhaps due to pre-submission fatigue, one of us wrote
the following class declaration (it should be justBug, not
Bug.java):

public class Bug.java {

Figure 9(a) shows the stack trace produced when JRefactory
processes a class containing the incorrect class declaration.
Inspection of the code at the point of the exception shows
that JRefactory correctly detects the invalid class name and
attempts to print a useful error message. However, the er-
ror message code fails because it dereferences the return
value ofExceptionPrinter.getInstance(), which re-
turnsExceptionPrinter.singleton, which is null.

java.lang.NullPointerException:

at net.sourceforge.jrefactory.factory.ParserFactory.

getAbstractSyntaxTree():46

at org.acm.seguin.pretty.PrettyPrintFile.apply():102

at org.acm.seguin.tools.builder.PrettyPrinter.

visit():77

at org.acm.seguin.io.DirectoryTreeTraversal.

traverse():91

at org.acm.seguin.io.DirectoryTreeTraversal.run():43

...

at PrettyPrinter.main():54

(a)

Origin:

org.acm.seguin.awt.ExceptionPrinter.<clinit>():70

(b)

Figure 9. Case 4: VM output for a JRefactory bug. (a) The
stack trace alone shows that a parse error was encountered.
(b) Origin tracking shows that the error reporting data struc-
ture was not properly initialized.

java.lang.NullPointerException:

at gnu.xml.dom.DomDocument.checkNewChild():315

at gnu.xml.dom.DomDocument.appendChild():341

at org.eclipse.pde.internal.builders.XMLErrorReporter.

endDocument():159

at gnu.xml.stream.SAXParser.parse():669

at javax.xml.parsers.SAXParser.parse():273

...

at org.eclipse.core.internal.jobs.Worker.run():76

(a)

Origin: org.eclipse.pde.internal.builders.

ManifestConsistencyChecker.checkFile():76

(b)

Figure 10. Case 5: VM output for an Eclipse bug. (a) The
stack trace alone indicates a parsing error. (b) Origin track-
ing identifies the source of the exception.

Figure 9(b) shows the origin: the class initializer sets
ExceptionPrinter.singleton to null, and it is not mod-
ified after that. On inspection, we found that the other
methods inExceptionPrinter automatically initialize the
singleton field whenever it is null, and we believe this
behavior is needed in thegetInstance() method as well.
We submitted this bug and the suggested fix to JRefactory’s
bug tracker (Bug 1674321), but as of the camera-ready copy
there has been no response.

Case 5: Eclipse #1: Malformed XML Document The
Eclipse integrated development environment (IDE) version
3.2 [10] can fail when a user provides an improper XML
document specifying a plugin project’s extensions. If the
XML document is malformed and contains no root element,
Eclipse throws a null pointer exception when attempting to
parse the document. While the stack trace indicates that the

failure occurred during parsing, the origin information ex-
presses that the XML documents lacks a root element.

Figure 10(a) shows the stack trace produced by this null
pointer exception. Without origin tracking, determining the
cause using the stack trace alone would be quite difficult,
since the null value is an input parameter to the method. Fur-
ther investigation with the debugger would involve following
the value back through a series of method calls.

The origin tracking information, shown in Figure 10(b),
reveals exactly what is wrong with the XML file. The null
value originates in the code that checks the consistency of
the file. The specific origin location indicates that the XML
fRootElement’s value is initialized to null and never set to
any other value. This value is then passed toendDocument,
and on toappendChild and finally tocheckNewChild.

We reported this bug to Eclipse developers (Bug 176500).
Developers determined the bug was in the underlying XML
parser, which is separate from Eclipse, and they were unable
to reproduce the bug in the latest version of Eclipse (3.3).
Given that the origin shows thatfRootElement was never
initialized, we believe this report would most likely help fix
a bug in the XML parser.

Case 6: Checkstyle: Empty Default Case Checkstyle
checks Java source code for compliance to a coding stan-
dard. Checkstyle’s bug tracker contains a bug report describ-
ing how to reproduce a null pointer exception in Version 4.2
(Bug 1472228). The exception occurs when Checkstyle pro-
cesses code where thedefault case has no statements. We
reproduced this bug by providing a class to Checkstyle with
the followingswitch statement:

switch(x) {

case 0:

test = true;

break;

default:

}

Without origin tracking, Figure 11(a) shows the resulting
exception stack trace. We show code with line numbers from
FallThroughCheck.checkSlist():

195: DetailAST lastStmt = aAST.getLastChild();

196:

197: if (lastStmt.getType() == TokenTypes.RCURLY) {

198: lastStmt = lastStmt.getPreviousSibling();

199: }

200:

201: return (lastStmt != null) &&

202: isTerminated(lastStmt, aUseBreak, aUseContinue);

The exception occurs becauselastStmt is null at line 197.
However, it is not clear what that null value signifies, or
whether it is safe to simply skip processinglastStmt in
the case that it is null.

The extra information provided by origin tracking, shown
in Figure 11(b), helps to answer this question. Origin track-
ing shows that the null value originates in the Antlr parser
component, meaning that the value is set to null during pars-

java.lang.NullPointerException:

at com.puppycrawl.tools.checkstyle.checks.coding.

FallThroughCheck.checkSlist():197

at com.puppycrawl.tools.checkstyle.checks.coding.

FallThroughCheck.isTerminated():168

at com.puppycrawl.tools.checkstyle.checks.coding.

FallThroughCheck.visitToken():136

at com.puppycrawl.tools.checkstyle.TreeWalker.

notifyVisit():500

at com.puppycrawl.tools.checkstyle.TreeWalker.

processIter():625

...

at com.puppycrawl.tools.checkstyle.Main.main():127

(a)

Origin: antlr.ASTFactory.make():323

(b)

Figure 11. Case 6: VM output for Checkstyle bug. (a) Stack
trace indicates an error checking a fall-through case. (b) The
origin shows the null value originated when constructing the
program AST.

java.lang.NullPointerException:

at jode.decompiler.ClassAnalyzer.<init>():96

at jode.decompiler.ClassAnalyzer.initialize():220

at jode.decompiler.ClassAnalyzer.dumpJavaFile():620

at jode.decompiler.ClassAnalyzer.dumpJavaFile():613

at jode.decompiler.Main.decompileClass():184

at jode.decompiler.Main.decompile():376

at jode.decompiler.Main.main():203

(a)

Origin: jode.bytecode.ClassInfo.forName():157

(b)

Figure 12. Case 7: VM output for JODE bug. (a) The stack
trace alone indicates that an inner class has a null pointer to
its outer class. (b) Origin tracking tells us that the outer class
may never have been initialized.

java.lang.NullPointerException:

at org.python.core.ListFunctions.__call__():48

at org.python.core.PyObject.invoke():2105

at org.python.pycode._pyx8.f$0():<console>

at org.python.pycode._pyx8.call_function():<console>

at org.python.core.PyTableCode.call():155

...

at org.python.util.jython.main():178

(a)

Origin: org.python.core.PyClass.__findattr__():178

(b)

Figure 13. Case 8: VM output for a Jython bug. (a) Ex-
ception output provided by the VM. (b) Extra information
provided by origin tracking.

ing rather than in some (possibly erroneous) part of the
Checkstyle code itself. Thus the origin should help devel-
opers determine that the null value is not erroneous and sim-
ply indicates a case with no statements. A response to the
bug report notes that adding a null check fixes the bug, and
developers implemented the fix in Checkstyle 4.3.

Case 7: JODE: Exception Decompiling Class Java Op-
timize and Decompile Environment (JODE) is a package
that includes a decompiler and optimizer for Java. We re-
produced a bug in version 1.1.1 that occurs when trying to
decompile a particular class file (Bug 821212). While the
stack trace identifies the immediate cause of the failure, the
origin information shows that an important logical depen-
dence (between inner and outer classes) is not being main-
tained properly.

Figure 12(a) shows the stack trace produced by this fail-
ure. The exception occurs during initialization of an inner
class because a pointer to information about the outer class
is null. With the stack trace and the source code, we were un-
able to understand why this pointer was null. Furthermore,
we could not find source for the class to be decompiled (pro-
vided in the bug report), which is not surprising since the
user reporting the bug wanted to decompile it!

The reported origin, shown in Figure 12(b), indicates that
the pointer to the outer class is null at the allocation site for
the inner class information object. The field is initializedto
null and never set anywhere else, leading us to believe that
the outer class may not have been loaded and initialized yet.
The origin information is likely to be useful to developers,
since it reveals a problem with the logic involved in JODE’s
class loading. We added the information to the official bug
report. However, the bug remains unfixed.

Case 8: Jython: Use Built-In Class as Variable Jython
is an implementation of the Python language integrated
with Java. We reproduce an exception from an entry on
the jython-devmailing list archive, dated September 17,
2001 [19], that applies to Jython 2.0. The exception occurs
when the user uses a built-in method as a class variable,
which should be a valid operation.

Figure 13 shows the exception stack trace for this bug,
and the extra information origin tracking provides. We ex-
amined the source code and found that the source of the
null reference is far removed from the null pointer excep-
tion. Thus, the information provided by origin tracking is
nontrivial.

We were unable to understand this bug well enough to
fix it or to determine if the information provided by origin
tracking is useful. A Jython expert examined the source
and determined that the implementation was not advanced
enough to handle using a built-in class as a variable [35].
The bug is fixed in Jython 2.2 (we could not reproduce the
bug in 2.2), although we could not find any record of the
fix, and we were unable to determine the fix by inspection
because of the large differences between the two versions.

java.lang.NullPointerException:

at org.jfree.chart.renderer.xy.StackedXYAreaRenderer.

drawItem():457

at Bug.test():52

at Bug.main():20

(a)

Origin:

org.jfree.chart.renderer.xy.StackedXYAreaRenderer$

StackedXYAreaRendererState.<init>():138

(b)

Figure 14. Case 9: VM output for a JFreeChart bug. (a) The
exception stack trace. (b) The null reference’s origin.

java.lang.NullPointerException:

at org.python.core.PyObject.getDoc():360

at java.lang.reflect.Method.invoke():147

at org.python.core.PyGetSetDescr.__get__():55

at org.python.core.PyObject.object___findattr__():2770

at org.python.core.PyObject.__findattr__():1044

...

at org.python.util.jython.main():214

(a)

Origin: org.python.core.PyObject.fastGetDict():2723

(b)

Figure 15. Case 10: VM output for a Jython bug. (a) Excep-
tion output provided by vanilla VM. (b) Extra information
provided by origin tracking.

java.lang.NullPointerException:

at org.acm.seguin.pretty.PrettyPrintVisitor.

removeLastToken():1184

at org.acm.seguin.pretty.PrettyPrintVisitor.visit():979

at org.acm.seguin.pretty.PrettyPrintFile.apply():129

at org.acm.seguin.pretty.PrettyPrintFile.apply():105

at org.acm.seguin.tools.builder.PrettyPrinter.

visit():77

...

at PrettyPrinter.main():54

(a)

Origin: org.acm.seguin.pretty.PrettyPrintVisitor.

removeLastToken():1177

(b)

Figure 16. Case 11: VM output for a JRefactory bug. (a)
Exception output provided by vanilla VM. (b) Extra infor-
mation provided by origin tracking.

Case 9: JFreeChart: Stacked XY Plot with Lines JFree-
Chart is an advanced library for displaying charts in Java
applications. A null pointer exception occurs when an ap-
plication attempts to generate a stacked XY plot that has
lines enabled in Version 1.0.0 (Bug 1593156). Figure 14(a)
shows the exception stack trace that occurs. The stack trace

shows that the exception occurs when JFreeChart derefer-
encesStackedXYAreaRenderer.lines, which is null.

Origin tracking reports the constructor forStackedXY-
AreaRendered, whereStackedXYAreaRenderer.lines
is initialized to null (Figure 14(b)). This information tells de-
velopers thatlines is null because it is initialized to null at
allocation time, rather than being assigned null later. How-
ever, sincelines is private and is not assigned anywhere
besides the constructor, it is fairly easy to reach this conclu-
sion by inspection of the class alone. Developers fixed the
bug in the next version of JFreeChart by initializinglines
to a defaultLine2D object.

Case 10: Jython: Program Accessing doc Attribute
We found the second Jython bug on Jython’s bug tracker
(Bug 1462188). The null pointer exception occurs when try-
ing to access thedoc attribute of a dictionary object.

Figure 15 shows the exception output and the extra infor-
mation origin tracking provides. Examining Jython’s source,
we find that PyObject.fastGetDict() is called from
the line that causes the exception (PyObject.java:360).
Thus, origin tracking’s information is not very insight-
ful because the null reference’s source program location
is not far removed from its dereference. However, since
PyObject.fastGetDict() is a virtual method that is over-
ridden in six different subclasses, origin tracking does nar-
row down the source of the null reference from seven possi-
bilities to one. This information will save a developer time
in understanding the bug, especially if the bug is not repro-
ducible.

According to the bug report, developers fixed the bug
simply by checking if the value returned byfastGetDict()
is null. If so,getDoc() then returns rather than dereferenc-
ing the null pointer.

Case 11: JRefactory: Package and Import on Same Line
JRefactory is a refactoring tool for Java. JRefactory 2.9.18
throws a null pointer exception when provided a Java source
file with the package and import declarations on the same
line (Bug 973332):

package edu.utexas; import java.io.*;

Figure 16 shows that the null’s origin (line 1177) is just
seven lines above the exception’s occurrence (line 1184),
and static inspection of the code reveals that the null pointer
exception can only occur when line 1177 is the origin, so the
information provided by origin tracking is trivial in this case.
We were unable to understand this bug well enough to fix it,
and no fix has yet been reported.

Case 12: Eclipse: Close Eclipse While Deleting Project
If the user initiates a delete of a project with an open file
and then immediately tries to close the Eclipse application
before the delete is complete, Eclipse 3.1.2 throws a null
pointer exception (Bug 142749). The exception occurs be-
cause Eclipse attempts to save the open file upon application

java.lang.NullPointerException:

at org.eclipse.ui.internal.EditorManager$7.run():1323

at org.eclipse.core.internal.runtime.InternalPlatform.

run():1044

at org.eclipse.core.runtime.Platform.run():783

at org.eclipse.ui.internal.EditorManager.

saveEditorState():1282

at org.eclipse.ui.internal.EditorManager.

saveState():1203

...

at org.eclipse.core.launcher.Main.main():948

(a)

Origin: org.eclipse.core.internal.resources.Resource.

getLocation():876

(b)

Figure 17. Case 12: VM output for an Eclipse bug. (a) Ex-
ception output provided by vanilla VM. (b) Extra informa-
tion provided by origin tracking.

close, but the save uses a project root object that the delete
operation has already nulled.

Using the stack trace and origin information shown in
Figure 17, we examined the Eclipse source code and found
that the origin of the null isnot far removed from the
null pointer exception:EditorManager$7.run() calls a
methodFileEditorInput.getPath(), which callsRe-
source.getLocation(), which returns a null constant be-
cause the project no longer exists. Thus, origin tracking pro-
vides trivial information that is not helpful for fixing this
bug.

References
[1] H. Agrawal and J. R. Horgan. Dynamic Program Slicing.

In ACM Conference on Programming Language Design and
Implementation, pages 246–256, 1990.

[2] E. Allen. Diagnosing Java Code: The Dangling Composite
bug pattern. http://www-128.ibm.com/developerworks/-
java/library/j-diag2/, 2001.

[3] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. Mergen,
T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. Shepherd,
S. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The
Jalapeño Virtual Machine.IBM Systems Journal, 39(1):211–
238, 2000.

[4] G. Ammons, T. Ball, and J. R. Larus. Exploiting Hardware
Performance Counters with Flow and Context Sensitive
Profiling. In ACM Conference on Programming Language
Design and Implementation, pages 85–96, Las Vegas, NV,
1997.

[5] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney.
Adaptive Optimization in the Jalapeño JVM. InACM
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 47–65, 2000.

[6] A. Ayers, R. Schooler, C. Metcalf, A. Agarwal, J. Rhee, and

E. Witchel. TraceBack: First Fault Diagnosis by Reconstruc-
tion of Distributed Control Flow. InACM Conference on
Programming Language Design and Implementation, pages
201–212, 2005.

[7] E. D. Berger and B. G. Zorn. DieHard: Probabilistic Memory
Safety for Unsafe Languages. InACM Conference on
Programming Language Design and Implementation, pages
158–168, 2006.

[8] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo Benchmarks:
Java Benchmarking Development and Analysis. InACM
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 169–190, 2006.

[9] P. Chalin and P. James. Non-null references by default in
java: Alleviating the nullity annotation burden. Technical
Report 2006-003, Concordia University, 2006.

[10] Eclipse.org Home. http://www.eclipse.org/.

[11] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended Static Checking for Java. In
ACM Conference on Programming Language Design and
Implementation, pages 234–245, 2002.

[12] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A System and
Language for Building System-Specific, Static Analyses. In
ACM Conference on Programming Language Design and
Implementation, pages 69–82, 2002.

[13] S. Hangal and M. S. Lam. Tracking Down Software Bugs
Using Automatic Anomaly Detection. InACM International
Conference on Software Engineering, pages 291–301, 2002.

[14] D. Hovemeyer and W. Pugh. Finding Bugs is Easy.
In Companion to ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages
132–136, 2004.

[15] D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating and
Tuning a Static Analysis to Find Null Pointer Bugs. In
ACM Workshop on Program Analysis for Software Tools and
Engineering, pages 13–19.

[16] Jikes RVM. http://www.jikesrvm.org.

[17] Jikes RVM Research Archive. http://www.jikesrvm.org/-
Research+Archive.

[18] Jlint. http://jlint.sourceforge.net.

[19] Jython-dev Mailing List. http://sourceforge.net/mailarchive/-
forum.php?forumid=5587.

[20] S. Kaufer, R. Lopez, and S. Pratap. Saber-C: An Interpreter-
Based Programming Environment for the C Language. In
Summer USENIX Conference, pages 161–71, 1988.

[21] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Scalable Statistical Bug Isolation. InACM Conference on
Programming Language Design and Implementation, pages
15–26, 2005.

[22] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification (2nd Edition). Prentice Hall PTR, 1999.

[23] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting
Atomicity Violations via Access-Interleaving Invariants. In
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 37–
48, 2006.

[24] Mckoi SQL Database. http://www.mckoi.com/database/.

[25] N. Nethercote and A. Mycroft. Redux: A Dynamic Dataflow
Tracer. Electronic Notes in Theoretical Computer Science,
89(2), 2003.

[26] N. Nethercote and J. Seward. Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation. In
ACM Conference on Programming Language Design and
Implementation, pages 89–100, 2007.

[27] J. Newsome and D. Song. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Generation
of Exploits on Commodity Software. InNetwork and
Distributed System Security Symposium.

[28] PMD. http://pmd.sourceforge.net.

[29] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating
Bugs as Allergies—A Safe Method to Survive Software Fail-
ures. InACM Symposium on Operating System Principles,
pages 235–248, 2005.

[30] M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu, and J. Bee-

bee. Enhancing Server Availability and Security through
Failure-Oblivious Computing. InUSENIX Symposium on
Operating Systems Design and Implementation, pages 303–
316, 2004.

[31] J. Seward and N. Nethercote. Using Valgrind to Detect
Undefined Value Errors with Bit-Precision. InUSENIX
Annual Technical Conference, pages 17–30, 2005.

[32] SourceForge.net. http://www.sourceforge.net/.

[33] Standard Performance Evaluation Corporation.SPECjvm98
Documentation, release 1.03 edition, 1999.

[34] Standard Performance Evaluation Corporation.SPECjbb2000
Documentation, release 1.01 edition, 2001.

[35] B. Wiedermann. Personal communication, November 2006.

[36] X. Zhang, S. Tallam, N. Gupta, and R. Gupta. Towards
Locating Execution Omission Errors. InACM Conference on
Programming Language Design and Implementation, pages
415–424, 2007.

[37] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. Midkiff,
and J. Torrellas. AccMon: Automatically Detecting Memory-
related Bugs via Program Counter-based Invariants. In
IEEE/ACM International Symposium on Microarchitecture,
pages 269–280, 2004.

