
Tolerating Memory Leaks ∗

Michael D. Bond Kathryn S. McKinley

Department of Computer Sciences

The University of Texas at Austin

{mikebond,mckinley}@cs.utexas.edu

Abstract

Type safety and garbage collection in managed languages

eliminate memory errors such as dangling pointers, double

frees, and leaks of unreachable objects. Unfortunately, a pro-

gram still leaks memory if it maintains references to objects

it will never use again. Leaked objects decrease program lo-

cality and increase garbage collection frequency and work-

load. A growing leak will eventually exhaust memory and

crash the program.

This paper introduces a leak tolerance approach called

Melt that safely eliminates performance degradations and

crashes due to leaks of dead but reachable objects in man-

aged languages, given sufficient disk space to hold leaking

objects. Melt (1) identifies stale objects that the program is

not accessing; (2) segregates in-use and stale objects by stor-

ing stale objects to disk; and (3) preserves safety by activat-

ing stale objects if the program subsequently accesses them.

We design and build a prototype implementation of Melt in a

Java VM and show it adds overhead low enough for produc-

tion systems. Whereas existing VMs grind to a halt and then

crash on programs with leaks, Melt keeps many of these pro-

grams running much longer without significantly degrading

performance. Melt provides users the illusion of a fixed leak

and gives developers more time to fix leaky programs.

Categories and Subject Descriptors D.2.5 [Software En-

gineering]: Testing and Debugging—Error handling and re-

covery

General Terms Reliability, Performance, Experimentation

∗ This work was supported by an Intel PhD Fellowship, NSF CNS-0719966,

NSF CCF-0429859, NSF EIA-0303609, DARPA F33615-03-C-4106, Intel,

CISCO, and Microsoft. Any opinions, findings and conclusions expressed

herein are the authors’ and do not necessarily reflect those of the sponsors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA.
Copyright c© 2008 ACM 978-1-60558-215-3/08/10. . . $5.00

1. Introduction

Managed languages use type safety and garbage collection

to improve program reliability by eliminating errors inher-

ent in explicit memory management. For example, these fea-

tures eliminate double (repeat) frees and premature frees that

leave dangling pointers. They also eliminate the effort re-

quired to insert frees correctly, improving programmer pro-

ductivity. Unfortunately, programmers may neglect to elim-

inate pointers to objects the program will never use again.

These objects are leaked because garbage collection uses

reachability as an over-approximation of liveness. Leaks in-

crease garbage collection frequency and workload and may

hurt application performance by bloating the working set

size. Growing leaks slow and eventually crash the applica-

tion when memory is exhausted.

Leaks are especially hard to reproduce, find, and fix since

they have no immediate symptoms [24]. Leaks in managed

languages are a problem in practice and a number of recent

tools help developers diagnose and fix leaks [44, 9, 34, 38,

49, 52]. Unfortunately, leaks occur in deployed software be-

cause, even with these tools, leaks sometimes escape detec-

tion by developers. The goal of leak tolerance is to provide

users the illusion there is no leak—the program does not

slow to a halt or crash. Leak tolerance is not a replacement

for fixing leaks; it gives developers more time and informa-

tion to fix leaks while improving the user experience.

This paper presents a new leak tolerance approach called

Melt that transfers likely leaked objects to disk. By offload-

ing leaks to disk and freeing up physical and virtual mem-

ory, Melt significantly delays memory exhaustion since disks

are typically orders of magnitude larger than main memory.

Melt is analogous to operating system paging since both con-

serve memory by transferring stale memory to disk. How-

ever, standard paging is insufficient for managed languages

since (1) pages mixing in-use and leaked objects waste space

and cannot be paged to disk, and (2) garbage collection

thrashes since its working set is all objects. Melt effectively

provides fine-grained paging by using object instead of page

granularity and by restricting the collector to access only

objects in memory. Determining whether an object is live

(will be used again) is undecidable in general, so Melt pre-

dicts that stale objects (objects the program has not used in a

while) are likely leaks and moves them to disk. Melt is safe

and maintains program semantics. If the application tries to

access an object on disk, Melt activates it by moving it from

disk back to main memory.

Melt keeps programs performing well by guaranteeing

time and space remain proportional to in-use (non-leaked)

memory. It restricts the application and garbage collector

to accessing in-use objects in memory and prohibits ac-

cesses to stale objects on disk, and it keeps metadata pro-

portional to in-use memory. Other leak tolerance approaches

for garbage-collected languages do not provide this guaran-

tee [11, 21, 57]. Bookmarking collection is similar to Melt in

that it restricts collection to in-use pages, but it operates at

page granularity [26], whereas Melt seeks to tolerate leaks

with fine-grain object tracking and reorganization.

We implement Melt in a Java Virtual Machine (JVM) us-

ing a copying generational collector, but the design works

with any tracing copying or non-copying collector. Our re-

sults show that Melt generally adds overhead only when the

program is close to running out of memory. For simplicity,

our implementation inserts instrumentation into the appli-

cation that helps identify stale objects, adding on average

6% overhead, but a future implementation could insert this

instrumentation only in response to memory pressure. We

apply Melt to 10 leaks, including 2 leaks in Eclipse and a

leak in a MySQL database client application. Melt success-

fully tolerates five of these leaks: throughput does not de-

grade over time, and the programs run until they exhaust disk

space or exceed a 24-hour limit. It helps two other leaks but

adds high overhead activating objects that are temporarily

stale but not dead. Of the other three, two do not exhibit true

leaks since most of the heap growth is memory that is inad-

vertently in-use: the application continues to access objects

it is not using. Melt cannot tolerate the third leak because of

a shortcoming in the current implementation.

As a whole, our results indicate that Melt is a viable

approach for safely increasing program reliability with low

overhead, and it is a compelling feature for production VMs.

2. Leak Tolerance with Melt

Melt’s primary objective is to give the illusion there is no

leak: performance does not degrade as the leak grows, the

program does not crash, and it runs correctly. To achieve this

objective, Melt meets the following design goals:

1. Time and space overheads are proportional to the in-use

memory, not leaked memory.

2. Melt provides safety by preserving and, if needed, acti-

vating stale objects.

Furthermore, Melt adheres to the following invariants:

• Stale objects are isolated from the in-use objects in a

separate stale space, which resides on disk.

• The collector never accesses objects in the stale space,

except when moving objects to the stale space.

• The application never accesses objects in the stale space,

except when activating objects from the stale space.

We satisfy these invariants as follows: (1) Melt identifies

stale objects (Section 2.1); (2) it segregates stale objects

from in-use objects by moving stale objects to disk, and it

uses double indirection for references from stale to in-use

objects (Section 2.2); and (3) it intercepts program attempts

to access objects in the stale space and immediately moves

the object into the in-use space. (Section 2.3). Section 2.4

presents how Melt decides when and which stale objects to

move to disk, based on how close the program is to running

out of memory.

2.1 Identifying Stale Objects

We classify reachable objects that the program has not refer-

enced in a while as stale. If the program never accesses them

again, they are true leaks. As we show later, some leaks man-

ifest as in-use (live) objects. For example, the program for-

gets to delete objects from a hash table, keeps adding objects,

and then rehashes all elements every time it grows beyond

the current limit. Staleness thus under-approximates leaks of

in-use objects.

To identify stale objects, Melt requires modifications to

both the garbage collector and the dynamic compiler. At

a high level, the modified collector marks objects as stale

on each collection, and the modified compiler adds instru-

mentation to the application to unmark objects at each use.

At each collection, objects the program has not accessed

since the last collection will still be stale, while accessed

objects will be unmarked. For efficiency, the collector ac-

tually marks both references and objects as stale. It marks

references by setting the lowest (least significant) bit of the

pointer. The lowest bit is available for marking since object

references are word-aligned in most VMs. In Melt, the col-

lector marks objects as stale by setting a bit in the object

header.

The compiler adds instrumentation called a conditional

read barrier [8] to every load of an object reference. The

barrier checks whether the reference is stale. If it is stale, the

barrier unmarks the referenced object and the reference. The

following pseudocode shows the barrier:

b = a.f; // Application code

if (b & 0x1) { // Conditional barrier

t = b; // Backup ref

b &= ~0x1; // Unmark ref

a.f = b; [iff a.f == t] // Atomic store

b.staleHeaderBit = 0x0; // Unmark object

}

This conditional barrier reduces overhead since it performs

stores only the first time the application loads each reference

in each mutator epoch (the mutator is the application alone,

not the collector). Checking for a marked reference, rather

than a marked object, reduces overhead since it avoids an

extra memory load.

For thread safety, we use an atomic store for the un-

marked reference (a.f = b). Otherwise another thread’s

write to a.f may be lost. The pseudocode [iff a.f ==

t] indicates the store is dependent on a.f being unchanged.

We implement the atomic store using a compare-and-swap

(CAS) instruction that succeeds only if a.f still contains

the original value of b. If the atomic store fails, the read

barrier simply continues; it is semantically correct to pro-

ceed with (unmarked) b while a.f holds the update from

the other thread. Similarly, clearing the stale header bit

(b.staleHeaderBit = 0x0) must be atomic if another

thread can update other bits in the header. In our implemen-

tation, these atomic stores add negligible overhead since the

body of the conditional barrier executes infrequently.

At the next collection, each object will be marked stale

if and only if the application did not load a reference to it

since the previous collection. Figure 1 shows an example

heap with stale (shaded gray) objects C and D. They have

not been accessed since the last collection, because all their

incoming references are stale, marked with S. Although B
has incoming stale references, B is in-use because the refer-

ence A → B is in-use.

2.2 The Stale Space

When the garbage collection traces the heap, it now also

moves stale objects to the stale space, which resides on disk.

For example, the collector moves stale objects C and D from

Figure 1 to the stale space, as illustrated by Figure 2.

Stub-scion pairs. References from stale objects to in-use

objects are problematic because moving collectors such as

copying and compacting collectors move in-use objects. For

example, consider moving B, which has references from C
and D. If B moves, we do not want to touch stale objects

to update their outgoing references, which would violate the

invariants. We solve this problem by using stub-scion pairs,

borrowed from distributed garbage collection [46]. Stub-

scion pairs provide two levels of indirection. Melt creates

a stub object in the stale space and a scion object in the in-

use space for each in-use object that is referenced by one or

more stale object(s). The collector avoids touching stubs and

stale objects by referencing and updating the scion. The stub

has a single field that points to the scion.

The scion has two fields: one points to the in-use object

and the other points back to its stub. We modify references in

the stale space that refer to an in-use object to refer instead to

the stub. Figure 3 shows Bstub and Bscion providing two levels

of indirection for references from C and D to B. Scions may

not move. The collector treats scions as roots, retaining in-

use objects referenced by stale objects. If the collector moves

an object referenced by a scion, it updates the scion to point

to the moved object.

Figure 1. Stale Objects and References

Figure 2. Segregation of In-Use and Stale Objects

Figure 3. Stub-Scion Pairs

Figure 4. Scion-Referenced Object Becomes Stale

To ensure each in-use object has only one stub-scion pair,

we use a scion lookup table that maps from an in-use object

to its scion, if it has one. This data structure is proportional

to the number of scions, which is proportional to the number

of in-use objects in the worst case, but is usually much

smaller in practice. The collector processes the scions at

the beginning of collection. Returning to Figure 2, when

the collector copies C to the stale space, B initially has no

entry in the scion lookup table, so Melt adds a mapping B
→ Bscion to the table when it creates Bstub and Bscion. Next,

when it copies D to the stale space, it finds the mapping B
→ Bscion in the table and re-uses the existing stub-scion pair.

The resulting system snapshot is shown in Figure 3.

It may seem at first that we need scions but not necessarily

stubs, i.e., stale objects could point directly to the scion.

However, we need both because an in-use object referenced

by a scion may become stale later. For example, consider the

case when B becomes stale in Figure 3. In order to eliminate

the scion without a stub (to avoid using in-use memory for

stale-to-stale references), we would need to find all the stale

pointers to the scion, which violates the stale space invariant

to never visit stale objects after instantiation. Instead, Melt

copies B to the stale space, looks up the stub location in the

scion, and points the stub to stale B. Note that Melt accesses

the disk both to modify the stub and to move the new stale

object. This accesses do not violate invariants since are part

of moving an object to the stale space. Melt then deletes

the scion and removes the entry in the scion lookup table.

Figure 4 shows the result.

2.3 Activating Stale Objects

Melt prevents the application from directly accessing the

stale space since (1) these accesses would violate the in-

variant that the stale space is not part of the application’s

working set, and (2) object references in the stale space may

refer to stubs and scions. Melt intercepts application access

to stale objects by modifying the read barrier to check for

references to the stale space:

b = a.f; // Application code

if (b & 0x1) { // Read barrier

t = b;

b &= ~0x1;

// Check if in stale space

if (inStaleSpace(b)) {

b = activateStaleObject(b);

}

a.f = b; [iff a.f == t]

b.staleHeaderBit = 0x0;

}

The VM method activateStaleObject() copies the stale

object to the in-use space. Since other references may still

point to the stale version, activateStaleObject() cre-

ates a stub-scion pair for the activated object as follows: (1)

it converts the stale space object version into a stub, and

Figure 5. Stale Object Activation

Figure 6. Reference Updates Following Activation

(2) it creates a scion and points the stub at the scion. The

scion points to the activated object. The store to a.f must

be atomic with respect to the original value of b, i.e., [iff

a.f == t].

Consider activating C from Figure 4. First, activate-

StaleObject() copies C to the in-use space. Then it re-

places stale C with a stub, allocates a scion, and links them

all together, as shown in Figure 5. Note that C retains its ref-

erences to D and Bstub, and E retains its reference to the old

version of C, which is now Cstub.

If the application later follows a different reference to the

previously stale object in the stale space, activateStale-

Object() finds the stub in the object’s place, which it fol-

lows to the scion, which in turn points to the activated object.

The first access of such a reference will update the reference

to point to the activated version and any subsequent accesses

will go directly to the in-use object. For example, if the ap-

plication accesses a reference from E to Cstub in Figure 5,

activateStaleObject() follows Cstub to Cscion to C in

the in-use space and updates the reference, as shown in Fig-

ure 6.

2.4 When to Move Objects to the Stale Space

Melt can mark objects as stale and/or move objects to the

stale space on any full-heap garbage collection. However, it

does not make sense to incur this overhead if the application

is not leaking memory. Furthermore, Melt could potentially

fill the disk for a non-leaking application, producing an error

Figure 7. State diagram for when Melt marks objects as stale and moves objects to the stale space.

where none would have existed. Thus, Melt decides whether

to mark and move based on how full the heap is as shown in

Figure 7.

Initially Melt is INACTIVE: it does not mark or move ob-

jects. It also does not need read barriers if the VM supports

adding them later via recompilation or code patching (we

did not implement this feature). The heap fullness is the ra-

tio of reachable memory to maximum heap size at the end

of a full-heap collection. Since users typically run applica-

tions in heaps at least twice the minimum needed to keep GC

overhead low, by default we use 50% fullness as the “unex-

pected” heap fullness. If the heap fullness exceeds this ex-

pected amount, Melt moves to the MARK state, where the

GC marks all objects and references during the next full-

heap GC.

After GC marks all objects and references, Melt enters the

WAIT state. It remains in the WAIT state until the program

is close to memory exhaustion; then it enters the MOVE &

MARK state. By default this threshold is 80% heap fullness.

Users could specify 100% heap fullness, which would wait

until complete heap exhaustion before using the stale space.

However, coming close to running out of memory brings the

application to a virtual halt because garbage collection be-

comes extremely frequent. In MOVE & MARK, Melt moves

all objects still marked to the stale space. It marks all objects

that remain in the in-use space, so they can be moved to the

stale space later if still marked. If the heap is still nearly

full (e.g., for fast-growing leaks), Melt remains in MOVE

& MARK for another full-heap GC. Otherwise, it returns to

WAIT until the heap fills again, and then it returns to MOVE

& MARK, and so on. Melt could potentially return to IN-

ACTIVE if memory usage decreased to expected levels (not

shown).

3. Implementation Details

This section presents details specific to our implementa-

tion. Our approach is suitable for garbage-collected, type-

safe languages using tracing garbage collectors. We call

our implementation Melt for simplicity. We implement Melt

in Jikes RVM 2.9.2, a high-performance Java-in-Java vir-

tual machine [1, 2, 32]. The DaCapo benchmark regression

tests page shows that Jikes RVM performs the same as Sun

Hotspot 1.5 and 15–20% worse than Sun 1.6, JRockit, and

J9 1.9, all configured for high performance [16]. Our perfor-

mance measurements are therefore relative to an excellent

baseline.

We have made Melt publicly available on the Jikes RVM

Research Archive [33].

3.1 VM Issues

Garbage collection. Melt’s design is compatible with

moving and non-moving tracing collectors, such as copy-

ing, compaction, and mark-sweep, all of which are in use

by modern high-performance VMs. To demonstrate the flex-

ibility and generality of Melt, we use a high-performance

generational copying collector. Since Melt correctly handles

moving in-use objects, the most challenging case, it can eas-

ily handle non-moving collectors as well. The generational

collector allocates objects into a nursery; when the nursery

fills, the collector traces the live nursery objects and copies

them into a copying mature space. The collector reserves

half the mature space for copying. When the mature space

fills, the collector performs a full-heap collection that copies

all live mature objects into the mature copy reserve.

Jikes RVM’s memory manager, the Memory Manage-

ment Toolkit (MMTk) [6], supports a variety of garbage

collectors with most functionality residing in shared code.

Melt resides mostly in this shared code. To support another

collector, one must implement a method that specifies (1)

the space(s) that contain potentially stale objects and (2) the

space into which to activate objects.

Identifying stale objects. To identify stale objects, Melt

modifies (1) the compiler to add read barriers to the appli-

cation and (2) the collector to mark heap references and ob-

jects stale. Jikes RVM uses two compilers: an initial base-

line compiler and an optimizing compiler invoked for hot

methods at successively higher optimization levels. Both add

Melt read barriers. For efficiency and simplicity, we exclude

VM objects and objects directly pointed to by roots (regis-

ters, stacks, and statics) as candidates for the stale space.

Moving large objects. Like most VMs, MMTk allocates

large objects (8 KB or larger) into a special non-moving

large object space (LOS). Since we need to copy large ob-

jects to disk, we modify the LOS to handle copying. During

collection, when Melt first encounters a stale large object, it

moves it to the stale space, updates the reference, and installs

a forwarding pointer used to correct any other references to

this object. At the end of the collection, it reclaims the space

for any large objects it moves. Activation works in the same

way as for other object sizes.

Activating stale objects. Melt uses read barriers to inter-

cept application reads to the stale space (Section 2.3). Melt

immediately copies the object to the mature space (or a large

object space if the object is large) and updates the reference.

Since activation allocates into the in-use part of the heap,

it may trigger a garbage collection (GC). Application reads

are not necessarily GC-safe points. GC-safe points require

the VM to be able to enumerate all the pointers into the

heap, i.e., to produce a stack map of the local, global, and

temporary variables in registers. In Jikes RVM (as in many

other VMs), allocations, method entries, method exits, and

loop back edges are GC-safe points. If an activation triggers

a GC, Melt defers collection by requesting an asynchronous

collection, which causes collection to occur at the next GC-

safe point.

3.2 Stale Space on Disk

64-bit on-disk addressing. Melt uses an on-disk stale

space with 64-bit addressing, even though memory is 32-

bit addressed. When it moves a stale object to disk, it uses a

64-bit address and expands the object’s reference slots to 64

bits. Similarly, it uses 64-bit stubs. Most stale objects refer

to other stale objects. For stale objects referenced by in-use

objects, we use a level of indirection to handle the translation

from 32- to 64-bit addresses. These mapping stubs reside in

memory, but reference 64-bit on-disk objects. The GC traces

mapping stubs, which reside in in-use memory, and collects

unreachable mapping stubs. The number of mapping stubs

is bounded by the number of references from in-use to stale

memory, which is small in practice, and is at worst propor-

tional to in-use memory.

Figures 8 and 9 show the 64-bit on-disk stale space rep-

resentation for Figures 5 and 6. The main difference is the

mapping stub space, which provides indirection for refer-

ences from the in-use space to the stale space. Three types

of references are 64 bits: mapping stubs, references in stale

objects, and pointers from scions to their stubs. If a stale ob-

ject references an in-memory object, e.g., Cstub → Cscion in

Figure 9, the reference uses only the lower 32 bits.

We use swizzling [39, 58] to convert references between

32-bit in-memory and 64-bit on-disk addresses. When the

collector moves an object to the stale space, it unswizzles

outgoing reference slots. If a slot references a mapping stub,

the collector stores the target of the mapping stub in the slot,

in order to avoid using in-use memory (the mapping stub)

for an intra-disk reference. When a read barrier activates an

object in the stale space, it swizzles outgoing references by

creating the mapping stub for each slot that references a 64-

bit object. When the application activates C in Figure 8, Melt

swizzles its references to Bstub and D by creating mapping

stubs BSms (mapping stub of Bstub) and Dms, and redirecting

the references through them, as shown in Figure 9.

Figure 8. Figure 4 with On-Disk Stale Space

Figure 9. Figure 5 with On-Disk Stale Space

Buffering stale objects. Melt initially moves stale objects

into in-memory buffers that each correspond to a 64-bit on-

disk address range. Buffering enables object scanning and

object expansion (from 32- to 64-bit reference slots) to oc-

cur in memory, and it avoids performing a native read()
call for every object moved to the stale space. Furthermore,

Melt flushes these buffers to disk gradually throughout ap-

plication execution time, avoiding increased collection pause

times.

3.3 Multithreading

Melt supports multiple application and garbage collection

threads by synchronizing shared accesses in read barriers,

the scion lookup table, and the stale space. The scion lookup

table is a shared, global hash table used during garbage col-

lection to find existing scions for in-use objects referenced

by the stale space. For simplicity, table accesses use global

synchronization, but for better scalability, a future imple-

mentation could use fine-grained synchronization or a lock-

free hash table.

Stale space accesses occur when the collector moves an

object to the stale space or the application activates a stale

object. Melt increases parallelism by using one file per col-

lector thread (there is one collector thread per processor) and

by using thread-local buffers for stale objects before flushing

them to disk. Each thread allocates stale objects to a differ-

ent part of the 64-bit stale address range: the high 8 bits of

the address specify the thread ID.

An application thread may activate an object allocated

by the collector thread on another processor. In this case,

the read barrier acquires a per-collector thread lock when

accessing the collector thread’s buffers and file. When Melt

flushes stale buffers in parallel with application execution, it

acquires the appropriate collector thread’s lock.

3.4 Saving Stale Space

This section discusses approaches for reducing the size of

the stale space. We have not implemented these approaches.

With Melt as described, garbage collection is incomplete

because it does not collect the stale space. Stale objects

may become unreachable after they are moved to the stale

space and furthermore, they may refer to in-use objects.

These uncollectible in-use objects will eventually move to

the stale space since they are inherently stale. For example,

even if C in Figure 6 becomes unreachable, the scion will

keep it alive and it will eventually move to the stale space.

One solution would be to reference-count the stale space,

but reference counting cannot collect cycles. Alternatively,

Melt could occasionally trace all memory including the stale

space. An orthogonal approach would be to compress the

stale space [12]. The stale space is especially suitable for

compression compared with a regular heap because the stale

space is accessed infrequently.

4. Results

This section evaluates Melt’s performance and its ability

to tolerate leaks in several real programs and third-party

microbenchmarks.

4.1 Performance Methodology

VM configurations. By default, Jikes RVM initially uses a

baseline non-optimizing compiler to generate machine code.

Over time, it dynamically identifies frequently-executed

methods and recompiles them at higher optimization levels.

We refer to experiments using this default execution model

as using adaptive methodology. Because Jikes RVM uses

timer-based sampling to detect hot methods, the adaptive

methodology is nondeterministic. For example, compilation

allocates memory and perturbs garbage collection workload.

To eliminate this source of nondeterminism, we use replay

methodology [31, 43, 51]. Replay uses advice files to force

the VM to compile the same methods at the same level and

point in execution and with the same profile information

executions and thus avoids high variability due to sampling-

driven compilation.

Benchmarks. To measure Melt’s overhead, we use the Da-

Capo benchmarks version 2006-10-MR1, a fixed-workload

version of SPECjbb2000 called pseudojbb, and SPECjvm98

[7, 53, 54].

Platform. Performance experiments execute on a dual-

core 3.2 GHz Pentium 4 system with 2 GB of main memory

running Linux 2.6.20.3. Each core has a 64-byte L1 and L2

cache line size, a 16-KB 8-way set associative L1 data cache,

a 12Kµops L1 instruction trace cache, and a 1-MB unified

8-way set associative L2 on-chip cache. The top four leaks

in Table 2 execute on a Core 2 Quad 2.4 GHz system with 2

GB of main memory running Linux 2.6.20.3, with 126 GB

of free disk space. Each core has a 64-byte L1 and L2 cache

line size, an 8-way 32-KB L1 data/instruction cache, and

each pair of cores shares a 4-MB 16-way L2 on-chip cache.

4.2 Melt’s Overhead

Application overhead. Figure 10 presents the run-time

overhead of Melt. We run each benchmark in a single

medium heap size, two times the minimum in which it can

execute. Each bar is normalized to Base (an unmodified VM)

and includes application and collection time, but not com-

pilation time. Each bar is the median of five trials; the thin

error bars show the range of the five trials. For all experi-

ments, except for some bloat experiments, run-to-run varia-

tion is quite low since replay methodology eliminates almost

all nondeterminism. The variation in bloat is high in general

and not related to these configurations. The bottom sub-bars

are the fraction of time spent in garbage collection.

Barriers includes only Melt’s read barrier; the barrier’s

condition is never true since the collector does not mark

references stale. Marking performs marking of references

and objects on every full-heap GC, i.e., Melt is always in the

MARK state (Section 2.4). Melt memory performs marking

and moving to the stale space on every full-heap GC (i.e.,

Melt is always in the MOVE & MARK state), but the stale

space is in memory rather than on disk. This configuration is

analogous to adding a third generation based on object usage

in a generational collector. Finally, Melt marks objects and

moves objects to the on-disk stale space on every full-heap

GC.

The graph shows that the read barrier alone costs 6% on

average, and adding Marking adds no noticeable overhead.

The Melt memory configuration, which divides the heap into

in-use and in-memory stale spaces, has a negligible effect on

overall performance. In fact, it sometimes improves collec-

tor performance (see below). Storing stale objects on disk

(Melt) adds 1% to average execution time because of the

extra costs of swizzling between 32- and 64-bit references

and transferring objects to and from disk. Melt improves

the performance of a few programs relative to barrier over-

head. This improvement comes from better program locality

(jython and lusearch) and lower GC overhead (xalan).

Melt’s 6% read barrier overhead is comparable to read

barrier overheads for concurrent, incremental, and real-time

collectors [4, 17, 45], whose increasing prevalence may lead

to general-purpose hardware support for read barriers. Melt

achieves low overhead because the common case is just two

IA32 instructions in optimized code: a register comparison

antlr
bloat

chart
eclipse

fop hsqldb
jython

luindex

lusearch

pmd
xalan

pseudojbb

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

geomean

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

 a
pp

lic
at

io
n

ti
m

e

Base
Barriers
Marking (every GC)
Melt memory (every GC)
Melt (every GC)

Figure 10. Application execution time overhead of Melt configurations. Sub-bars are GC time.

Total Average per GC

Moved to stale Activated In-use Stale In→St St→In Scions GCs

antlr 157,486 (10 MB) 28 (0 MB) 68,331 (7 MB) 104,877 (6 MB) 1,592 6,250 2,692 4

bloat 337,126 (19 MB) 51,970 (2 MB) 127,335 (9 MB) 238,167 (14 MB) 13,196 29,701 10,358 6

chart 192,810 (10 MB) 107 (0 MB) 95,139 (14 MB) 153,928 (8 MB) 22,443 23,440 4,079 6

eclipse 1,789,252 (102 MB) 478,518 (17 MB) 258,823 (18 MB) 1,096,570 (65 MB) 48,590 607,619 81,852 24

jython 215,807 (14 MB) 16,842 (1 MB) 47,253 (6 MB) 193,691 (12 MB) 21,028 45,467 30,818 15

luindex 157,814 (9 MB) 308 (0 MB) 55,033 (7 MB) 118,091 (7 MB) 17,718 21,281 1,333 5

lusearch 249,709 (16 MB) 20,287 (2 MB) 92,224 (43 MB) 205,606 (13 MB) 7,593 10,622 9,493 9
pmd 475,714 (26 MB) 28,064 (1 MB) 125,625 (8 MB) 337,292 (19 MB) 39,811 18,787 10,419 16

xalan 701,733 (151 MB) 18,892 (1 MB) 43,538 (13 MB) 461,928 (87 MB) 26,741 77,565 5,173 101

Table 1. Statistics for the DaCapo benchmarks running Melt (every GC) with 1.5 times the minimum heap size.

2 3 4 5

Minimum heap size multiplier

1.0

1.5

2.0

N
or

m
al

iz
ed

 G
C

 t
im

e

Base
Marking (every GC)
Melt mem (every GC)
Melt (every GC)

Figure 11. Normalized GC times for Melt configurations

across heap sizes.

and a branch. An alternative to all-the-time read barriers

would be to start without read barriers and recompile all

methods only when the program entered the MARK state.

Collection overhead. Figure 11 shows the geometric mean

of the time spent in garbage collection as a function of heap

size for all our benchmarks using Melt. We measure GC

times at 1.5x, 2x, 3x, and 5x the minimum heap size for each

benchmark. Times are normalized to Base with 5x min heap.

Note that the y-axis starts at 1 and not 0.

The graph shows Marking slows collection by up to 7%

for the smaller heap sizes. The other configurations measure

both the overhead and benefits of using the stale space. Melt

memory, which enjoys the benefits of reduced GC workload

and frequency due to stale space discounting, speeds collec-

tion 15% over Marking and 8% over Base for the 1.5x heap.

Melt adds up to 10% GC overhead over an in-memory stale

space due to pointer swizzling and transferring objects to and

from disk. This configuration adds up to 10% over the base-

line in large heaps, but benefits and costs are roughly equal

at the smallest heap size, where Melt nets just 1% over the

baseline.

Compilation overhead. We also measure the compile-time

overheads of increased code size and slowing downstream

optimizations due to read barriers. Adding read barriers in-

creases generated code size by 10% and compilation time by

16% on average. Because compilation accounts for just 4%

on average of overall execution time, the effect of compila-

tion on overall performance is modest.

Melt statistics. Table 1 presents stale, in-use, and other

statistics for Melt running the DaCapo benchmarks and

marking and moving objects every full-heap GC (i.e., the

Leak (LOC) Melt’s effect Reason

EclipseDiff (2.4M) Runs until 24-hr limit (1,000X longer) Virtually all stale

EclipseCP (2.4M) Runs until 24-hr limit (194X longer) All stale?

JbbMod (34K) Runs until crash at 20 hours (19X longer) All stale?

ListLeak (9) Runs until disk full (200X longer) All stale

SwapLeak (33) Runs until disk full (1,000X longer) All stale

MySQL (75K) Runs until crash (74X longer; high activation overhead) Almost all stale

Delaunay (1.9K) Some help; high activation overhead Short-running

SPECjbb2000 (34K) Runs 2.2X longer Most stale memory in use

DualLeak (55) Runs 2.0X longer Almost all stale memory in use

Mckoi (95K) Runs 2.2X longer Threads’ stacks leak

Table 2. Ten leaks and Melt’s ability to tolerate them.

Melt configuration used in Figures 10 and 11). We run with

a small heap, 1.5 times the minimum heap size for each

benchmark, in order to trigger frequent collections and thus

exercise Melt more heavily. The table presents the total num-

ber of objects moved to the stale space and activated by the

program. It also shows objects in the in-use and stale spaces,

pointers from in-use to stale and from stale to in-use, and

scions, averaged over each full-heap GC except the first,

which we exclude since it does not move any objects to

the stale space. The final column is the number of full-heap

GCs. We exclude fop and hsqldb since they execute fewer

than two full-heap GCs.

The table shows that Melt moves 9–151 MB to the stale

space, and the program activates 0–17 MB of this mem-

ory. Some benchmarks activate a significant fraction of stale

memory, for example, more than 10% for bloat, eclipse, and

lusearch due to this experiment’s aggressive policy of mov-

ing objects to the stale space on every GC. The next two

columns of Table 1 show that often more than half of the

heap is stale for a long time, which explains the reductions

in collection time observed in Figure 10. Leak tolerance can

improve the performance of applications that do not have

leaks per se but only use a small portion of a larger working

set for significant periods of time. Used this way, leak toler-

ance is analogous to a fine-grained virtual memory manager

for managed languages.

The In→St column shows the average number of refer-

ences from in-use to stale objects. These references require

a mapping stub to redirect from 32-bit memory to 64-bit

disk, but there are usually signficantly fewer mapping stubs

than in-use objects. The St→In and Scions columns show

the number of references from stale to in-use objects and the

number of scions, respectively. The next section shows that

for growing leaks, the number of scions stays small and pro-

portional to in-use memory, while references from stale to

in-use grow with the leak, motivating leak tolerance’s use of

stub-scion pairs.

4.3 Tolerating Leaks

This section evaluates how well Melt tolerates growing leaks

by running them longer and maintaining program perfor-

mance. Table 2 shows all 10 leaks we found and could re-

produce: two leaks in Eclipse, EclipseDiff and EclipseCP; a

leak in a MySQL client application; a leak in Delaunay, a sci-

entific computing application; a real leak in SPECjbb2000
and an injected leak in SPECjbb2000 called JbbMod; a leak

in Mckoi, a database application; and three third-party mi-

crobenchmark leaks: ListLeak and SwapLeak from Sun De-

veloper Network, and DualLeak from IBM developerWorks.

Melt tolerates 5 of these 10 leaks well; it tolerates 2 leaks

but adds high overhead by activating many stale objects; and

it does not significantly help 3 leaks.

Melt cannot tolerate leaks in SPECjbb2000 and Dual-
Leak because they are live leaks: the programs periodically

access the objects they access. For example, DualLeak re-

peatedly adds String objects to a HashSet. It does not re-

move or use these objects again. However, when the Hash-
Set grows, it re-hashes all the elements and accesses the

String objects, so the String cannot remain in the stale space

permanently. It seems challenging in general to determine

that an object being accessed is nonetheless useless. How-

ever, future work could design leak-tolerant data structures

that avoid inadvertently accessing objects that the applica-

tion has not accessed in a while. At least two other leaky

programs, EclipseDiff and MySQL, have live leaks, although

they leak significantly more dead than live memory, so Melt

can still improve their longevity and performance signifi-

cantly.

We run the following experiments in maximum heap sizes

chosen to be about twice what each program would need

if it were not leaking. All the programs except Delaunay
have growing leaks, so their behavior with and without Melt

is not very sensitive to maximum heap size. All programs

have a memory ceiling, which may be heap size, physical

memory, or virtual memory, although physical memory is

always a ceiling since it causes GC to thrash [26, 60]. Melt

extends a progam’s memory ceiling to include all available

disk space, substantially postponing a crash. We run Jikes

RVM in uniprocessor mode because in multiprocessor mode,

the VM often crashes before completing runs lasting many

hours, apparently due to bugs in Melt or Jikes RVM.

EclipseDiff. Eclipse is an integrated development envi-

ronment (IDE) written in Java with over 2 millions lines

of source code [18]. We reproduce Eclipse bug #115789,

which reports that repeatedly performing a structural (re-

cursive) diff, or compare, slowly leaks memory that even-

tually leads to memory exhaustion. The leak occurs because

a data structure for navigation history maintains references

it should not. It exists in Eclipse 3.1.2 but was fixed by de-

velopers for Eclipse 3.2 after we reported a fix in previous

leak detection work [9].

We automate repeated structural differences via an Eclipse

plugin that reports the wall clock time for each iteration of

the difference. Figure 12 shows the time each iteration takes

for vanilla Jikes RVM 2.9.2, the Sun JVM 1.5.0, and Jikes

RVM with Melt. We use iterations as the x-axis. This figure

shows the first 300 iterations in order to compare the three

VMs, and Figure 13 shows the performance of just Melt for

its entire run (terminated by us after 24 hours). Unmodified

Jikes RVM slows and crashes after about 50 iterations when

its heap fills. Sun JVM, which uses a more space-efficient

collector than the generational copying collector used by

Jikes in our experiments, runs almost 200 iterations before

grinding to a halt and crashing.

Melt’s performance stays steady in the long term with

variations in the short term. All VMs’ performance varies

per iteration because iterations interrupted by a full-heap GC

take longer. Melt’s performance varies more because full-

heap GCs that move objects to the stale space take longer:

Melt moves objects to the stale space, unswizzles their refer-

ences, and creates stub-scion pairs and mapping stubs. Melt

buffers new stale objects in memory during these GCs, and

it flushes these buffers to disk gradually during application

execution. Without this gradual flushing, performance varies

more. When we terminate Melt at 24 hours, it has written

over 80 GB to the on-disk stale space.

Figures 14 and 15 show reachable memory, as reported at

the end of the last full-heap GC, for the same VMs at each

iteration. Unmodified Jikes RVM and Sun JVM fill the heap

as the leak grows, while Melt starts moving stale objects

to the disk when the heap reaches 80% full, and it keeps

memory usage fairly constant in the long term. The figures

show that memory usage oscillates gradually between about

100 and 130 MB: (1) Melt moves objects to buffers for

the stale space when usage reaches 130 MB; (2) it then

slowly flushes these buffers to disk over time; and (3) in the

meantime, the leak continues to increase heap size until it

reaches 130 MB again and triggers Melt to repeat the cycle.

Figures 16 and 17 report numbers of objects and refer-

ences at each iteration of the EclipseDiff. We divide the data

between two graphs since the magnitudes vary greatly. Fig-

ure 16 shows that references from stale to in-use and objects

50 100 150 200 250 300

Iteration

0
2

4

T
im

e
(s

)

Jikes RVM
Sun JVM
Melt

Figure 12. Performance comparison of Jikes RVM, Sun

JVM, and Melt for the first 300 iterations of EclipseDiff.

0 20000 40000 60000

Iteration

0
2

4

T
im

e
(s

)

Figure 13. Performance of Melt running EclipseDiff

leak for 24 hours.

0 100 200 300

Iteration

0
50

10
0

15
0

20
0

R
ea

ch
ab

le
 m

em
or

y
(M

B
)

Jikes RVM
Sun JVM
Melt

Figure 14. Comparison of reachable memory for the

first 300 iterations of EclipseDiff.

0 20000 40000 60000

Iteration

0
50

10
0

15
0

20
0

R
ea

ch
ab

le
 m

em
or

y
(M

B
)

Figure 15. Reachable memory running EclipseDiff with

Melt for 24 hours.

0 20000 40000 60000

Iteration

0
1

bi
lli

on
2

bi
lli

on

Stale to in-use refs
Objects in stale space

Figure 16. EclipseDiff leak with Melt: stale objects and

references from stale to in-use.

0 20000 40000 60000

Iteration

0
1

m
ill

io
n

Scions

Objects in in-use space Objects activated

Figure 17. EclipseDiff leak with Melt: in-use objects,

objects activated, and scions.

in the stale space both grow linearly over iterations and have

large magnitudes. This result motivates avoiding a solution

that uses time or space proportional to stale objects or ref-

erences from stale to in-use objects. Figure 17 shows that

Melt holds in-use objects relatively constant over iterations.

The number of scions grows linearly over time, although it

stays small in magnitude: roughly one scion per iteration.

This growth occurs because a very small part of the leak is

live. Each iteration leaks a large data structure, and the root

object of this structure remains live, and this object uses an

extra scion.

The graph shows that the number of objects activated in-

creases linearly but its magnitude is still small compared

with objects in the stale space, i.e., just a few stale objects

are activated. Each activated object needs a scion, and many

more objects are activated than there are scions, which shows

that the application activates the same objects over and over

again. Future work could consider a different policy for ob-

jects that have been activated. The fact that scions stay rel-

atively small while stale-to-in-use references grow signifi-

cantly, motivates Melt’s use of stub-scion pairs to maintain

references from stale to in-use objects.

For the other leaks in this section that Melt tolerates,

we observe similar ratios for in-use and stale objects and

references between them.

EclipseCP. We reproduce Eclipse bug #155889, which re-

ports a growing leak when the user repeatedly cuts text,

1 10 100 1000

Iteration

0
20

40
60

T
im

e
(s

)

Jikes RVM
Melt

Figure 18. EclipseCP performance over time, with and

without Melt (logarithmic x-axis to show behavior of both

VMs).

1 10 100 1000

Iteration

0
10

0
20

0
30

0

R
ea

ch
ab

le
 m

em
or

y
(M

B
)

Jikes RVM
Melt

Figure 19. EclipseCP reachable memory over time, with

and without Melt (logarithmic x-axis).

saves, pastes the same text, and saves again. An Eclipse plu-

gin we wrote exercises the GUI to perform this cut-paste

behavior. Figure 18 shows the run time of each iteration of

a cut-save-paste-save of a large block of text, using a loga-

rithmic x-axis since unmodified Jikes runs for a short time

before running out of memory. We do not present data for

Sun JVM since we could not reproduce the leak with it. The

figure shows that Melt adds some overhead to EclipseCP,

but it is able to execute with fairly constant long-term per-

formance for nearly 200 times as many iterations as without

Melt. We terminate Melt after 24 hours, at which point it

has used 39 GB of disk space. We note that the performance

fluctuations are due to the application, not Melt, since they

occur with unmodified Jikes RVM. Figure 19 shows memory

usage over time, with and without Melt. Melt holds memory

fairly steady in the long term. The short-term fluctuations are

due to Melt moving objects gradually to the stale space each

time the heap reaches 80%.

JbbMod. Since SPECjbb2000 (see below) has significant

live heap growth, Tang et al. modified it by injecting a leak

of dead (permanently stale) objects [57]. This version, which

we call JbbMod, is a very slow-growing leak. Melt runs al-

most 21 hours (almost 20 times more iterations than without

Melt) before crashing with an apparent heap corruption er-

ror, likely due to a bug in Melt. During this time, it keeps

performance and memory usage fairly constant. We thus be-

lieve that all heap growth is dead and, in lieu of crashing,

Melt would run the program as long as disk space allowed.

ListLeak. The first microbenchmark leak is from a post

on the Sun Developer Network [56]. It is a very simple and

fast-growing leak:

List list = new LinkedList();

while (true) list.add(new Object());

Clearly this leak grows very quickly. Whereas unmodified

Jikes RVM and Sun JVM crash in seconds, Melt keeps

ListLeak running until it fills 126 GB of disk, which takes

about 100 minutes.

SwapLeak. This leak also comes from a message posted

on the Sun Developer Network [55]. The message asks for

help understanding why an attached program runs out of

memory. The program first initializes an array of 1,000,000

SObjects, which each contain an inner class Rep. The pro-

gram then swaps out each SObject’s Rep object with a new

SObject’s Rep object. Intuitively it seems that the second

operation should have no net effect on reachable memory.

However, as explained by a response to the message, the VM

keeps a reference from an inner class object back to its con-

taining object, which causes the swapped-out Rep object and

the new SObject to remain reachable. The fix is to make the

inner class static, but Melt provides the illusion of a fix with-

out needing to understand or apply the fix.

The swapping operation leaks only about 64 MB, so

we add a loop around this operation to create a growing

leak. SwapLeak grows nearly as quickly as ListLeak, and

unmodified Jikes RVM and Sun JVM survive fewer than five

iterations. Melt runs it for 2,341 iterations (7 hours) and then

terminates when it fills the available 126 GB of disk space.

MySQL. The MySQL leak is a simplified version of a

JDBC application from a colleague. The program exhausts

memory unless it acquires a new connection periodically.

The leak, which is in the JDBC library, occurs because SQL

statements executed on a connection remain reachable un-

less the connection is closed or the statements are explicitly

closed. The MySQL leak repeatedly creates a SQL statement

and executes it on a JDBC connection. We count 1,000 state-

ments as an iteration. The application stores the statement

objects in a hash table. The program periodically accesses

them when the hash table grows, re-hashing the statement

objects. However, in terms of bytes, objects referenced by

the statement objects contribute much more to the leak, i.e.,

the vast majority of objects are permanently stale.

Melt tolerates this leak but periodically suffers a huge

pause when the hash table grows and re-hashes its elements,

which activates all statement objects. Figures 20 and 21

show the performance (logarithmic y-axis) and memory us-

200 400 600 800 1000

Iteration

0.
01

0.
1

1.
0

10
10

0
10

00

T
im

e
(s

)

Jikes RVM
Sun JVM
Melt

Figure 20. MySQL performance over time, with and

without Melt. The y-axis is logarithmic because some pause

times are quite high.

200 400 600 800 1000

Iteration

0
50

10
0

15
0

R
ea

ch
ab

le
 m

em
or

y
(M

B
)

Jikes RVM
Sun JVM
Melt

Figure 21. MySQL reachable memory over time, with

and without Melt.

age of MySQL over time, with and without Melt. Unmodi-

fied Jikes RVM and Sun JVM quickly run out of memory, but

Melt keeps the program running for 74 times as many itera-

tions as Jikes RVM. When the hash table of statements grows

and re-hashes its elements, e.g., at iterations 300 and 600,

pause times rise to 30 minutes. Our implementation of Melt

is not optimized for activation performance since it does not

consider locality when moving objects to disk or activating

objects, so a future implementation could potentially do bet-

ter. Alternatively, an implementation could attempt to recog-

nize that statement objects are live rather than dead.

Melt terminates with an unrelated corruption error, mostly

likely caused by a bug in Melt or perhaps Jikes RVM, after 4

hours and 20 minutes. Melt could tolerate the leak longer if

the VM did not crash, albeit with periodic pauses to activate

all statement objects.

Delaunay. Next we present a leak in Delaunay, an appli-

cation that performs a Delaunay triangulation, which gener-

ates a triangle mesh, for a set of points, that meets a set of

constraints [22]. We obtained the program from colleagues

who added a history directed acyclic graph (DAG) to re-

duce algorithmic complexity of the triangulation, but the

Input Jikes Melt memory Melt

size Time Time Time Stale Activated

15,000 7 s 7 s 7 s 0 MB 0 MB

20,000 11 s 10 s 12 s 0 MB 0 MB

21,000 12 s 14 s 15 s 0 MB 0 MB

22,000 OOM 18 s 45 s 90 MB 14 MB

25,000 OOM 19 s 98 s 94 MB 18 MB

30,000 OOM 27 s 166 s 118 MB 25 MB

Table 3. Delaunay run times, stale memory, and acti-

vated memory for various input sizes. OOM means out

of memory.

change inadvertently caused graph components no longer in

the graph to remain reachable.

Delaunay is not a growing leak in a long-running pro-

gram. Rather, this leak degrades program performance and

prevents the program from running input sizes and heap sizes

that would work without the leak. To highlight this prob-

lem, we execute the program with a variety of input sizes,

comparing Jikes RVM to Melt’s memory and disk configu-

rations.

Table 3 shows run times for all configurations and how

much memory is transferred to and from disk using a maxi-

mum heap size of 256 MB and a variety of input sizes with

a focus on 21,000-22,000 iterations, when the program ex-

hausts memory. We set the threshold for moving objects to

the stale space at 95% to avoid moving objects to the stale

space too aggressively. For input sizes ≤21,000 iterations,

all VMs perform similarly since the program has enough

memory. Starting with 22,000 iterations, Melt tolerates the

leak while the unmodified VM runs out of memory. The per-

formance of Melt with an in-memory stale space scales well

with input size. The on-disk stale space’s performance does

not scale well because Melt activates many objects from

disk, which becomes expensive when the working set of ac-

cesses exceeds disk buffering. At some point, Melt is going

beyond tolerating the leak, i.e., the heap would not be large

enough even if the leak were fixed, as indicated by the in-

creasing amount of activated memory.

These results show that Melt can help somewhat with

short-running leaks, but it can add significant overhead if it

incorrectly moves many live objects to the stale space, since

activation overhead will be high.

SPECjbb2000. SPECjbb2000 simulates an order pro-

cessing system and is intended for evaluating server-side

Java performance [54]. It contains a known, growing mem-

ory leak that manifests when it runs for a long time without

changing warehouses. It leaks because it adds orders to an

order list that should have no net growth and does not cor-

rectly remove some of them.

Although SPECjbb2000 experiences unbounded heap

growth over time, it uses almost all the objects. The program

periodically accesses all orders in the order list. It seems

unlikely that any system will be able to differentiate useful

from useless memory accesses. We note that prior work on

staleness-based leak detection diagnoses this leak because

a small part of each order’s data structure is stale [9]. Melt

executes SPECjbb2000 about twice as long as without Melt

(1166 vs. 540 iterations) since it finds some stale memory

to move to disk. However, performance suffers beginning at

about 650 iterations because Melt starts moving many ob-

jects that are not permanently stale to disk in order to avoid

running out of memory, resulting in significant activation

overhead.

DualLeak. This leak comes from an example in an IBM

developerWorks column [23]. We call it DualLeak since its

55 sources lines contain two different leaks. The program

executes in iterations and exercises both leaks during each

iteration. The first leak is slow-growing and occurs because

of an off-by-one error that leads to an Integer object not

being removed from a Vector on each iteration. The other

leak grows more quickly by adding multiple String objects

to a HashSet on each iteration.

Melt cannot tolerate either leak since the program ac-

cesses all of the Vector and HashSet periodically. The Vec-
tor leak accesses all slots in the Vector every iteration, since

it removes elements from the middle of the vector, causing

all leaked elements to the right to be moved one slot to the

left. The HashSet repeatedly adds String objects that are ac-

cessed during re-hashing.

Melt executes twice as many iterations of DualLeak as

unmodified Jikes RVM by swapping out the HashSet ele-

ments when they are not in use. But this approach is not

sustainable. When the HashSet grows, Melt activates its el-

ements, hurting performance and eventually running out of

memory.

Mckoi. We reproduce a memory leak reported on a mes-

sage board for Mckoi SQL Database, a database manage-

ment system written in Java [37]. The leak occurs if a pro-

gram repeatedly opens a database connection, uses the con-

nection, and closes the connection. Mckoi does not properly

dispose of the connection thread, leading to a growing num-

ber of unused threads. These threads leak memory; most of

the leaked bytes are for each thread’s stack.

Melt cannot tolerate this leak because stacks are VM

objects in Jikes RVM, so they may not become stale. Also,

program code accesses the stack directly, so read barriers

cannot intercept accesses to stale objects. However, we could

modify Melt to detect stale threads (threads not scheduled

for a while) and make their stacks stale and also allow

objects directly referenced by the stack to become stale. If

the scheduler scheduled a stale thread, Melt would activate

the stack and all objects referenced by the stack.

Melt runs the leak for about twice as long as unmodified

Jikes RVM because Melt still finds some memory to swap

out that is not in use, but soon the leaked stacks dominate

memory usage and exhaust memory.

5. Related Work

Although there is a lot of prior work on detecting leaks,

only a few researchers have tried to tolerate leaks. Our leak

tolerance approach improves over previous approaches by

offering a comprehensive and safe solution that identifies

stale objects and handles small leaking objects with time and

space proportional to in-use memory.

5.1 Detecting Leaks

Static analysis for C and C++ detects leaks before the pro-

gram executes but can produce false positives [14, 25]. This

prior work focuses on identifying unfreed, unreachable ob-

jects whereas our work addresses reachable but dead ob-

jects. Dynamic tools for C and C++ track allocations, heap

updates, and frees to report unfreed objects [24, 35, 40] or

track object accesses to report stale objects [15, 47]. Online

leak detectors for managed languages identify heap growth

or stale objects to find potential leaks [9, 34, 38, 44, 49, 52].

5.2 Dealing with Memory Pressure

Language features and automatic approaches can help appli-

cations experiencing memory pressure.

To help programmers avoid leaks and manage large

heaps, the Java language definition provides weak and soft

references. The collector always reclaims weakly-referenced

objects, and it reclaims softly-referenced objects if the ap-

plication experiences memory pressure [19, 20]. Inserting

soft and weak references adds to the development burden,

and programmers may still forget to eliminate the last strong

(not weak or soft) reference.

Static liveness detection of GC roots can reduce the drag

between when objects die and when they are collected [27]

but cannot deal with other dead, but reachable, objects.

Many VMs dynamically size the heap based on appli-

cation behavior. For example, some approaches adaptively

trigger GC or resize the heap in order to improve GC per-

formance and program locality [13, 59, 60, 61]. These ap-

proaches do not directly address memory leaks.

When the application’s heap size exceeds its working

set size, bookmarking collection reduces collection over-

head [26]. It cooperates with the operating system to book-

mark swapped-out pages by marking in-memory objects

they reference as live. The garbage collector then never vis-

its bookmarked pages. Bookmarking can compact the heap

but cannot move objects referenced by bookmarked pages. It

tracks staleness on page granularity. Melt instead uses object

granularity, grouping and isolating leaking objects.

General error tolerance approaches, such as failure-

oblivious computing [50], DieHard [5], and Rx [48] deal

with memory corruption and nondeterministic errors to im-

prove reliability, but they do not handle memory leaks.

5.3 Tolerating Leaks

Several recent publications address the problem of tolerating

leaks [11, 21, 41, 42, 57]. Compared to Melt, they offer less

coverage, do not scale, or are unsafe.

Leaks in native languages. Cyclic memory allocation tol-

erates leaks in C and C++ by limiting allocation sites to m

live objects at a time [41]. Profiling runs determine m for

each allocation site, and subsequent executions allocate into

m-sized circular buffers. Cyclic memory allocation is un-

safe since it may overwrite live memory, although failure-

oblivious computing [50] mitigates the effects in some cases.

In contrast, our approach places no requirements on alloca-

tion sites and is always safe.

Plug safely tolerates leaks in C and C++ with an allocator

that segregates objects by age and allocation site, increasing

the likelihood that leaked and in-use objects will reside on

distinct pages [42]. Plug deals with later fragmentation via

virtual compaction, which maps two or more virtual pages

to the same physical page if the allocated slots on the pages

do not overlap. Plug’s approach helps native languages since

objects cannot move, but collectors in managed languages

can reorganize objects. In addition, segregating leaked and

in-use objects is insufficient for managed languages since

tracing collectors by default access the whole heap.

Leaks in managed languages. Panacea supports moving

stale objects to disk [11, 21]. The approach requires annota-

tions for objects that can be moved to disk, and these objects

must be serializable to get put on disk. Panacea does not

scale for small, stale objects—which we find are frequent

leak culprits—because it uses proxy objects for swapped-out

objects. An advantage of Panacea is that it is implemented at

the library level and needs no VM modifications.

LeakSurvivor [57] is the closest related work and was

developed concurrently with Melt [10]. Both approaches

free up virtual and physical memory by transferring highly

stale objects to disk, and both preserve safety by returning

accessed disk objects to memory. Unlike Melt, LeakSur-

vivor cannot guarantee space and time proportional to in-use

memory because references from stale to in-use objects con-

tinue to use space even if the in-use objects become stale. In

particular, entries in LeakSurvivor’s Swap-Out Table (SOT)

(similar to Melt’s scion table) cannot be eliminated if the tar-

get object moves to disk, since incoming pointers from disk

are unknown. In contrast, Melt uses two levels of indirection,

stub-scion pairs, to eliminate scions referencing objects later

moved to the stale space (Section 2.2). For the three leaks

evaluated in LeakSurvivor, the SOT grows only slightly, but

it is unclear if they grow proportionally to the leak since

the experiments are terminated after two hours, before the

leaks would have filled the disk. Melt adds less overhead

than LeakSurvivor to identify stale objects (6% vs. 21%)

since LeakSurvivor accesses an object’s header on each read,

while Melt uses referenced-based conditional read barriers

to avoid accessing object headers in the common case.

5.4 Orthogonal Persistence and Distributed GC

Leak tolerance uses mechanisms that have been used in

orthogonal persistence, distributed garbage collection, and

other areas. Orthogonal persistence uses object faulting,

pointer swizzling, and read barriers to support transparent

storage of objects on disk [3, 28, 29, 36, 62]. Pointer swiz-

zling can also be used to support huge address spaces [39,

58]. Our implementation uses swizzling to support a 64-bit

disk space on a 32-bit platform. Read barriers are widely

used in concurrent garbage collectors [4, 8, 17, 30, 45, 63].

Distributed collectors use stub-scion pairs for references be-

tween machines [46]. We use stub-scion pairs to support

references from stale to in-use objects. Although leak toler-

ance borrows existing mechanisms, previous work does not

combine these mechanisms in the same way as leak toler-

ance, i.e., to identify, isolate, and activate stale memory.

6. Conclusion

Garbage collection and type safety save programmers from

many memory bugs, but dead, reachable objects hurt per-

formance and crash programs. Given enough disk space,

our leak tolerance approach keeps programs from slowing

down and running out of memory. Melt requires only time

and space proportional to in-use memory, rather than leaked

memory, and preserves safety by activating stale objects on

disk that the program later references. Our Melt implementa-

tion adds low enough overhead for deployed use. For grow-

ing leaks in real programs, Melt substantially delays crashes

due to out-of-memory errors. With plenty of disk space, Melt

has the potential to improve the user experience. It buys de-

velopers more time to fix leaks and keeps users happy by

providing the illusion there is no leak. These attributes make

Melt a compelling feature for future production VMs.

Acknowledgments

We thank Jason Davis for the MySQL leak, Patrick Carrib-

ault for the Delaunay leak, Maria Jump for the SPECjbb2000

leak, and Yan Tang for the modified SPECjbb2000 leak.

Thanks to Eddie Aftandilian, Emery Berger, Steve Black-

burn, Curtis Dunham, Daniel Frampton, Robin Garner,

David Grove, Samuel Guyer, Xianglong Huang, Maria

Jump, Milind Kulkarni, Erez Petrank, Chris Pickett, Dim-

itrios Prountzos, and Jennifer Sartor for helpful discussions.

We thank Emery Berger, Rudy Depena, Tom Horn, Nicholas

Nethercote, and the anonymous reviewers for valuable feed-

back on the paper text.

References

[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,

P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,

M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. Mergen,

T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. Shepherd,

S. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The

Jalapeño Virtual Machine. IBM Systems Journal, 39(1):211–

238, 2000.

[2] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney.

Adaptive Optimization in the Jalapeño JVM. In ACM

Conference on Object-Oriented Programming, Systems,

Languages, and Applications, pages 47–65, 2000.

[3] M. P. Atkinson, L. Daynès, M. J. Jordan, T. Printezis, and

S. Spence. An Orthogonally Persistent Java. SIGMOD Rec.,

25(4):68–75, 1996.

[4] D. Bacon, P. Cheng, and V. Rajan. A Real-Time Garbage

Collector with Low Overhead and Consistent Utilization. In

ACM Symposium on Principles of Programming Languages,

pages 285–298, 2003.

[5] E. D. Berger and B. G. Zorn. DieHard: Probabilistic Memory

Safety for Unsafe Languages. In ACM Conference on

Programming Language Design and Implementation, pages

158–168, 2006.

[6] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and

Water? High Performance Garbage Collection in Java with

MMTk. In ACM International Conference on Software

Engineering, pages 137–146, 2004.

[7] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.

McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,

S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.

Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von

Dincklage, and B. Wiedermann. The DaCapo Benchmarks:

Java Benchmarking Development and Analysis. In ACM

Conference on Object-Oriented Programming, Systems,

Languages, and Applications, pages 169–190, 2006.

[8] S. M. Blackburn and A. L. Hosking. Barriers: Friend or Foe?

In ACM International Symposium on Memory Management,

pages 143–151, 2004.

[9] M. D. Bond and K. S. McKinley. Bell: Bit-Encoding Online

Memory Leak Detection. In ACM International Conference

on Architectural Support for Programming Languages and

Operating Systems, pages 61–72, 2006.

[10] M. D. Bond and K. S. McKinley. Tolerating Memory Leaks.

Technical Report TR-07-64, University of Texas at Austin,

December 2007.

[11] D. Breitgand, M. Goldstein, E. Henis, O. Shehory, and

Y. Weinsberg. PANACEA–Towards a Self-Healing Develop-

ment Framework. In Integrated Network Management, pages

169–178, 2007.

[12] G. Chen, M. Kandemir, N. Vijaykrishnan, M. J. Irwin,

B. Mathiske, and M. Wolczko. Heap Compression for

Memory-Constrained Java Environments. In ACM Confer-

ence on Object-Oriented Programming, Systems, Languages,

and Applications, pages 282–301, 2003.

[13] W. Chen, S. Bhansali, T. Chilimbi, X. Gao, and W. Chuang.

Profile-guided Proactive Garbage Collection for Locality Op-

timization. In ACM Conference on Programming Language

Design and Implementation, pages 332–340, 2006.

[14] S. Cherem, L. Princehouse, and R. Rugina. Practical Memory

Leak Detection using Guarded Value-Flow Analysis. In

ACM Conference on Programming Language Design and

Implementation, pages 480–491, 2007.

[15] T. M. Chilimbi and M. Hauswirth. Low-Overhead Memory

Leak Detection Using Adaptive Statistical Profiling. In

ACM International Conference on Architectural Support

for Programming Languages and Operating Systems, pages

156–164, 2004.

[16] DaCapo Benchmark Regression Tests. http://jikesrvm.anu.-

edu.au/˜dacapo/.

[17] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten,

and E. F. M. Steffens. On-the-Fly Garbage Collection: An

Exercise in Cooperation. Commun. ACM, 21(11):966–975,

Nov. 1978.

[18] Eclipse.org Home. http://www.eclipse.org/.

[19] B. Goetz. Plugging memory leaks with weak references,

2005. http://www-128.ibm.com/developerworks/java/-

library/j-jtp11225/.

[20] B. Goetz. Plugging memory leaks with soft references,

2006. http://www-128.ibm.com/developerworks/java/-

library/j-jtp01246.html.

[21] M. Goldstein, O. Shehory, and Y. Weinsberg. Can Self-

Healing Software Cope With Loitering? In International

Workshop on Software Quality Assurance, pages 1–8, 2007.

[22] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized In-

cremental Construction of Delaunay and Voronoi Diagrams.

In Colloquium on Automata, Languages and Programming,

pages 414–431, 1990.

[23] S. C. Gupta and R. Palanki. Java memory leaks – Catch

me if you can, 2005. http://www.ibm.com/developerworks/-

rational/library/05/0816 GuptaPalanki/index.html.

[24] R. Hastings and B. Joyce. Purify: Fast Detection of Memory

Leaks and Access Errors. In Winter USENIX Conference,

pages 125–136, 1992.

[25] D. L. Heine and M. S. Lam. A Practical Flow-Sensitive and

Context-Sensitive C and C++ Memory Leak Detector. In

ACM Conference on Programming Language Design and

Implementation, pages 168–181, 2003.

[26] M. Hertz, Y. Feng, and E. D. Berger. Garbage Collection

without Paging. In ACM Conference on Programming

Language Design and Implementation, pages 143–153, 2005.

[27] M. Hirzel, A. Diwan, and J. Henkel. On the Usefulness

of Type and Liveness Accuracy for Garbage Collection

and Leak Detection. ACM Transactions on Programming

Languages and Systems, 24(6):593–624, 2002.

[28] A. L. Hosking and J. Chen. PM3: An Orthogonal Persistent

Systems Programming Language – Design, Implementation,

Performance. In International Conference on Very Large

Data Bases, pages 587–598, 1999.

[29] A. L. Hosking and J. E. B. Moss. Object Fault Handling

for Persistent Programming Languages: A Performance

Evaluation. In ACM Conference on Object-Oriented

Programming, Systems, Languages, and Applications, pages

288–303, 1993.

[30] A. L. Hosking, N. Nystrom, Q. I. Cutts, and K. Brahnmath.

Optimizing the Read and Write Barriers for Orthogonal

Persistence. In International Workshop on Persistent Object

Systems, pages 149–159, 1999.

[31] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss,

Z. Wang, and P. Cheng. The Garbage Collection Advantage:

Improving Program Locality. In ACM Conference on

Object-Oriented Programming, Systems, Languages, and

Applications, pages 69–80, 2004.

[32] Jikes RVM. http://www.jikesrvm.org.

[33] Jikes RVM Research Archive. http://www.jikesrvm.org/-

Research+Archive.

[34] M. Jump and K. S. McKinley. Cork: Dynamic Memory

Leak Detection for Garbage-Collected Languages. In ACM

Symposium on Principles of Programming Languages, pages

31–38, 2007.

[35] J. Maebe, M. Ronsse, and K. D. Bosschere. Precise Detection

of Memory Leaks. In International Workshop on Dynamic

Analysis, pages 25–31, 2004.

[36] A. Marquez, S. M. Blackburn, G. Mercer, and J. Zigman.

Implementing Orthogonally Persistent Java. In International

Workshop on Persistent Object Systems, pages 247–261,

2000.

[37] Mckoi SQL Database message board: memory/thread leak

with Mckoi 0.93 in embedded mode, 2002. http://www.-

mckoi.com/database/mail/subject.jsp?id=2172.

[38] N. Mitchell and G. Sevitsky. LeakBot: An Automated and

Lightweight Tool for Diagnosing Memory Leaks in Large

Java Applications. In European Conference on Object-

Oriented Programming, pages 351–377, 2003.

[39] J. E. B. Moss. Working with Persistent Objects: To Swizzle

or Not to Swizzle. IEEE Transactions on Computers,

18(8):657–673, 1992.

[40] N. Nethercote and J. Seward. Valgrind: A Framework

for Heavyweight Dynamic Binary Instrumentation. In

ACM Conference on Programming Language Design and

Implementation, pages 89–100, 2007.

[41] H. H. Nguyen and M. Rinard. Detecting and Eliminating

Memory Leaks Using Cyclic Memory Allocation. In ACM

International Symposium on Memory Management, pages

15–29, 2007.

[42] G. Novark, E. D. Berger, and B. G. Zorn. Plug: Automatically

Tolerating Memory Leaks in C and C++ Applications. Tech-

nical Report UM-CS-2008-009, University of Massachusetts,

2008.

[43] K. Ogata, T. Onodera, K. Kawachiya, H. Komatsu, and

T. Nakatani. Replay Compilation: Improving Debuggability

of a Just-in-Time Compiler. In ACM Conference on

Object-Oriented Programming, Systems, Languages, and

Applications, pages 241–252, 2006.

[44] Oracle. JRockit Mission Control. http://www.oracle.com/-

technology/products/jrockit/missioncontrol/.

[45] F. Pizlo, D. Frampton, E. Petrank, and B. Steensgaard. Sto-

pless: A Real-Time Garbage Collector for Multiprocessors.

In ACM International Symposium on Memory Management,

pages 159–172, 2007.

[46] D. Plainfossé. Distributed Garbage Collection and Reference

Management in the Soul Object Support System. PhD thesis,

Université Paris-6, Pierre-et-Marie-Curie, 1994.

[47] F. Qin, S. Lu, and Y. Zhou. SafeMem: Exploiting ECC-

Memory for Detecting Memory Leaks and Memory Corrup-

tion During Production Runs. In International Symposium on

High-Performance Computer Architecture, pages 291–302,

2005.

[48] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating

Bugs as Allergies—A Safe Method to Survive Software

Failures. In ACM Symposium on Operating Systems

Principles, pages 235–248, 2005.

[49] Quest. JProbe Memory Debugger. http://www.quest.com/-

jprobe/debugger.asp.

[50] M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu, and

W. Beebee. Enhancing Server Availability and Security

through Failure-Oblivious Computing. In USENIX Sym-

posium on Operating Systems Design and Implementation,

pages 303–316, 2004.

[51] N. Sachindran, J. E. B. Moss, and E. D. Berger. MC2: High-

Performance Garbage Collection for Memory-Constrained

Environments. In ACM Conference on Object-Oriented

Programming, Systems, Languages, and Applications, pages

81–98, 2004.

[52] SciTech Software. .NET Memory Profiler. http://www.-

scitech.se/memprofiler/.

[53] Standard Performance Evaluation Corporation. SPECjvm98

Documentation, release 1.03 edition, 1999.

[54] Standard Performance Evaluation Corporation. SPECjbb2000

Documentation, release 1.01 edition, 2001.

[55] Sun Developer Network Forum. Java Programming [Archive]

- garbage collection dilema (sic), 2003. http://forum.java.-

sun.com/thread.jspa?threadID=446934.

[56] Sun Developer Network Forum. Reflections & Reference

Objects - Java memory leak example, 2003. http://forum.-

java.sun.com/thread.jspa?threadID=456545.

[57] Y. Tang, Q. Gao, and F. Qin. LeakSurvivor: Towards Safely

Tolerating Memory Leaks for Garbage-Collected Languages.

In USENIX Annual Technical Conference, pages 307–320,

2008.

[58] P. R. Wilson. Pointer Swizzling at Page Fault Time:

Efficiently Supporting Huge Address Spaces on Standard

Hardware. ACM SIGARCH Comput. Archit. News, 19(4):6–

13, 1991.

[59] F. Xian, W. Srisa-an, and H. Jiang. MicroPhase: An Approach

to Proactively Invoking Garbage Collection for Improved

Performance. In ACM Conference on Object-Oriented

Programming, Systems, Languages, and Applications, pages

77–96, 2007.

[60] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss.

CRAMM: Virtual Memory Support for Garbage-Collected

Applications. In USENIX Symposium on Operating Systems

Design and Implementation, pages 103–116, 2006.

[61] T. Yang, M. Hertz, E. D. Berger, S. F. Kaplan, and J. E. B.

Moss. Automatic Heap Sizing: Taking Real Memory into

Account. In ACM International Symposium on Memory

Management, pages 61–72, 2004.

[62] J. N. Zigman, S. Blackburn, and J. E. B. Moss. TMOS: A

Transactional Garbage Collector. In International Workshop

on Persistent Object Systems, pages 138–156, 2001.

[63] B. Zorn. Barrier Methods for Garbage Collection. Technical

Report CU-CS-494-90, University of Colorado at Boulder,

1990.

