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Abstract

In large programs written in managed languages such as Java and
C#, holding unnecessary references often results in memory leaks
and bloat, degrading significantly their run-time performance and
scalability. Despite the existence of many leak detectors for such
languages, these detectors often target low-level objects; as a re-
sult, their reports contain many false warnings and lack sufficient
semantic information to help diagnose problems. This paper intro-
duces a specification-based technique called LeakChaser that can
not only capture precisely the unnecessary references leading to
leaks, but also explain, with high-level semantics, why these refer-
ences become unnecessary.

At the heart of LeakChaser is a three-tier approach that uses
varying levels of abstraction to assist programmers with different
skill levels and code familiarity to find leaks. At the highest tier
of the approach, the programmer only needs to specify the bound-
aries of coarse-grained activities, referred to as transactions. The
tool automatically infers liveness properties of these transactions,
by monitoring the execution, in order to find unnecessary refer-
ences. Diagnosis at this tier can be performed by any programmer
after inspecting the APIs and basic modules of a program, without
understanding of the detailed implementation of these APIs. At the
middle tier, the programmer can introduce application-specific se-
mantic information by specifying properties for the transactions. At
the lowest tier of the approach is a liveness checker that does not
rely on higher-level semantic information, but rather allows a pro-
grammer to assert lifetime relationships for pairs of objects. This
task could only be performed by skillful programmers who have
a clear understanding of data structures and algorithms in the pro-
gram.

We have implemented LeakChaser in Jikes RVM and used it
to help us diagnose several real-world leaks. The implementation
incurs a reasonable overhead for debugging and tuning. Our case
studies indicate that the implementation is powerful in guiding pro-
grammers with varying code familiarity to find the root causes of
several memory leaks—even someone who had not studied a leak-
ing program can quickly find the cause after using LeakChaser’s
iterative process that infers and checks properties with different lev-
els of semantic information.
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1. Introduction

A memory leak in a managed language such as Java or C# occurs
when references to some unused objects are unnecessarily held so
that these objects cannot be garbage collected. Memory leaks crash
programs when they exhaust the heap, and can frequently cause
performance issues due to increased garbage collection (GC) runs
and execution redundancies.

Problem: lack of semantics in leak detection Memory leak
detection in Java software has recently gained much interest in the
programming language and systems communities [€, 9, [1(, [1§, 20,
23,129,133, 36]. All existing detectors except one [3€] track behav-
iors of arbitrary objects and report problems when tracked objects
become suspicious. One major category of work [, |, [1(, [1&, 33]
considers objects’ staleness (i.e., time elapsed since the program
last used these objects) as an indicator of problematic behavior,
while another category [2(, 23] treats objects as suspicious if in-
stances of their types exhibit sustained growth. While both heuris-
tics are reasonable in many cases, they are not definitive evidence
of leaking objects because many normal objects can also exhibit
such behaviors. For example, growing numbers of instances are not
leaks if they are reclaimed later. And some GUI widgets may never
be used after they are initialized, i.e., they become very stale—but
they are not necessarily leaks. In addition, these leak detectors at-
tempt to find root causes by starting from the suspicious objects
(i.e., the leak symptom) and traversing the object graph. Due to
the complexity of the graph, this attempt is often a heuristics-based
process that ends up reporting a sea of likely problems with the
true causes being buried among them. Because a memory leak of-
ten occurs due to the inappropriate handling of certain events and
these tools profile the whole program execution without any focus,
there is little hope that a completely automated tool can precisely
pinpoint the problematic area(s) for large-scale Java applications.
While prior work avoids heuristics by focusing on containers [3€],
the root causes of many memory leaks are not containers, but in-
stead cached references that the programmer forgot to invalidate,
as represented by the leak cases in SPECjbb2000 and Eclipse bug
#115789 (Section B).

For a more focused leak detector, it is necessary to take advan-
tage of human insights and use programmer specifications to guide



leak detection. While prior work proposes heap assertions that can
be checked during GC [3, 13,30, 33], these low-level assertions may
only be employed by programmers who have deep understanding
of an application (e.g., algorithms, data structures, etc.). This re-
quirement limits significantly their usefulness in leak detection for
existing Java applications (i.e., because no prior assertions were
written during development), as very few performance experts have
sufficient program knowledge to use these assertions during post-
mortem tuning.

Insight  Almost all memory leaks we have studied are in
regularly occurring program events: unnecessary references can
quickly accumulate and cause the memory footprint to grow if each
such event forgets to clean up a small number of references.

The techniques proposed in this paper are based on the follow-
ing two observations about these frequently occurring code regions.
First, in these regions there usually exist implicit invariants among
lifetimes of objects (e.g., “objects a and b must die together,” or
“the old configuration object must die before the new configura-
tion object is created””). When such invariants are violated, memory
leaks result. It is often not easy to use reachability-based heap asser-
tions from prior work to express these lifetime relationships. Sec-
ond, for each such region, there often exist objects that are strongly
correlated with the liveness of the entire region. For example, con-
sider a (web or database) transaction in an enterprise Java applica-
tion. A typical lifecycle consists of a sequence of events such as the
creation of the transaction object, the creation of all other objects
used in this transaction, the deallocation of these (other) objects,
and the deallocation of the transaction object. For this lifecycle, the
transaction object is the first one that is created and the last one that
is reclaimed, and it is thus the object that controls the liveness of
this entire transaction region.

Our proposal We propose a three-tier approach that exploits
these insights to help a programmer quickly identify unnecessary
references leading to a memory leak. This approach can be used
by both novices and experts to diagnose memory problems. The
key idea is to introduce high-level semantics by explicitly consid-
ering coarse-grained events where leaks are observed. We refer to
these events as transactions. As extensions of—and inspired by—
enterprise transaction models (e.g., EJB transactions), our transac-
tions describe frequently executed code regions with user-defined
boundaries. Objects associated with a transaction fall into three cat-
egories: (1) transaction identifier object, (2) transaction-local ob-
jects, and (3) objects shared among transactions.

The identifier object of a transaction controls the lifetime of
the transaction: all transaction-local objects should be created after
this object is created and should die before it dies. Only shared
objects are allowed to live after the identifier object dies. Next,
we introduce the three tiers of our approach in descending order
of their levels of abstraction, which is often the order in which a
programmer uses our tool to solve a real-world problem.

Tier H (the high-level approach): At this highest level
of the approach, our framework attempts to automatically infer
transaction-local and shared objects from the execution, while the
programmer only needs to specify transaction boundaries and iden-
tifier objects. The tool starts to work in the inference mode, and
once objects shared among transactions are identified, it switches
to check whether the (inferred) shared objects can actually be used
in other transactions. Violations are reported if these shared objects
are not used for a certain period of time. The programmer’s task
at this level is the easiest to perform: we found that even when we
had not studied a program before, we could quickly identify these
(coarse-grained) events in order to perform the diagnosis.

Tier M (the medium-level approach): In this tier, the user needs
to specify not only the boundary of a transaction and the transaction

identifier object, but also the objects shared across transactions,
which the user does not specify in tier H.

LeakChaser checks the given specifications, and reports viola-
tions if the specified transaction-local objects in one instance of the
transaction escape to another instance. While employing this tier
of the tool requires the user to have a deeper understanding of the
program and the likely cause of the problem, it can generate a more
precise report.

Tier L (the low-level approach):  This lowest level is essen-
tially an assertion framework that allows the user to specify life-
time invariants for focused memory leak detection. The framework
contains binary assertions that directly express object lifetime re-
lationships. For instance, one important assertion is to specify that
object a must die before object b. This assertion fails only when
LeakChaser observes definitive evidence, e.g., b is dead while a is
still live.

Compared to reachability-based assertions [3, I3, B(, B35], our
framework has three advantages. First, passing/failing of our asser-
tions does not depend on where GC runs are triggered and thus, as-
sertion checking does not produce false positives. Second, program
locations where our assertions are placed have no influence on the
evaluation of these assertions. For example, we can assert that ob-
ject a dies before object b immediately after they are created, while
areachability-based assertion such as assertDead in prior work has
to be placed in a location where the asserted object is about to be-
come unreachable [3]. Third, our framework can be used to assert
arbitrary objects whose lifetimes are correlated due to some high-
level semantics (e.g., events), while a reachability-based assertion
can work only on objects that have low-level structural relation-
ships (e.g., reachability in the object graph).

Of course, using this assertion framework requires one to under-
stand considerable design and implementation details of the pro-
gram such as how a data structure is constructed. However, per-
forming this level of diagnosis can give the user a very precise
report. Hence, these assertions can be added by developers dur-
ing coding, which may ease significantly the diagnosis of mem-
ory problems when performance degradation is observed. In fact,
the transaction-based properties described in the other two tiers are
translated by our framework into these low-level assertions at run
time. Section Bl presents details about this translation.

As the level of abstraction decreases (from tier H to tier L), the
diagnosis becomes more focused. Figure [l illustrates the process
of memory leak detection using this framework. In our experience,
LeakChaser is especially useful to a performance expert who is
unfamiliar with the program code, since he or she can follow an
iterative process that involves all these levels of diagnosis (i.e.,
from tier H down to tier L). The programmer starts with the tier
H analysis with little program knowledge and insight. By repeating
a higher-level analysis a few times (with refined specifications) and
inspecting its reports, the programmer gains a deeper understanding
of the program as well as more insight into the problem, and then
will be able to move on to a lower-level analysis for a more focused
diagnosis. Very often, this process ends up narrowing down the
information to the exact cause of the leak.

For large-scale applications, LeakChaser allows programmers
to specify transactions at clients of these applications, without
digging into application implementation details. For example, to
diagnose problems in a large database system, the programmer
only needs to create transactions at client programs that perform
database queries. We found that this feature of the tool is quite
useful in simplifying the diagnostic task: all previous techniques
require a programmer to understand a fair amount of low-level
details of the system before she can start the diagnosis. This burden
is reduced significantly by LeakChaser.



Tier L

to use the tool

Knowledge and insight required

A 4

Analysis precision

Figure 1. Illustration of the diagnosis process. Spirals at each level
indicate that a user may need to run each tier multiple times with
refined specifications (e.g., smaller transaction regions, more pre-
cise shared object specifications, etc.) to gain sufficient knowledge
to proceed to a lower tier.

Implementation and experiments We implemented our ap-
proach in Jikes RVM 3.1.0 (http://jikesrvm.org), a high-
performance Java-in-Java virtual machine, and successfully ap-
plied it to real leaks in large-scale applications such as Eclipse and
MySQL. The implementation techniques are discussed in detail in
SectionEll Section@evaluates analysis expenses. We add one extra
word in the header of each run-time object and this space is used
to store the assertion information for the object. The overall space
overhead of the tool is less than 10%, including both extra header
space and memory used to store the metadata of our analysis. Using
the optimizing compiler and the Immix garbage collector [€], the
current implementation imposes an average slowdown of 2.3 x for
GC only and 1.1 x for overall executions for the framework infras-
tructure (i.e., no assertions added). Additional overhead is incurred
for checking and inferring specifications. For example, after adding
assertions to SPECjbb2000, 256,236 assertions were executed, and
overall slowdown was 5.5x. While the overhead is probably high
for production runs, we found it acceptable for performance tuning
and memory leak diagnosis.

Section Bl presents six case studies on real-world memory leak
problems. Among these problems, four are true leaks and for the
remaining two, programmers experienced high memory footprints
but were not sure whether or not there were leaks. Using our tool,
we have quickly identified root causes for the true leaks, and found
reasons that could explain the high memory consumption for the
other two cases. In SPECjbb2000, in addition to the already-known
leak, we found memory issues that have not been reported previ-
ously and actually cause more severe performance degradation than
the already-known leak.

We observed significant performance improvements after fixing
these problems. The experimental results strongly indicate that the
proposed three-tier diagnosis methodology can be adopted in real-
world development and tuning to find and prevent memory leaks,
and LeakChaser is useful in helping a programmer quickly identify
unnecessary references that lead to leaks and other memory issues.

The contributions of this work are:

e A three-layer methodology that introduces different levels of
abstraction to help both experts and novices understand and
diagnose memory leak problems.

e A new heap assertion framework that allows programmers to
assert object liveness properties instead of using reachability to
approximate liveness.

e An implementation of LeakChaser in Jikes RVM that piggy-
backs on garbage collection to check assertions.

e Six case studies demonstrating that LeakChaser can help a pro-
grammer unfamiliar with the program source code to quickly
find root causes of memory leaks.

2. Overview

We illustrate our technique using a simplified version of a real-
world memory leak (Eclipse bug #115789). Figure Pla) shows the
code that contains the leak. This bug can be easily reproduced
on Eclipse 3.1.2 when comparing the structures of two large JAR
files multiple times using an Eclipse built-in comparison option.
Method runCompare implements a comparison operation (in plu-
gin org.eclipse.compare). It is invoked every time the compar-
ison option is chosen, and this information can be easily obtained
from the Eclipse plugin APIs. The method takes a parameter of type
ISelection that contains information about the two selected files
to be compared. A ResourceCompareInput object is first created
using this parameter (line 3). This object is fairly heavyweight as it
caches the complete structures of the two files. The names of these
files are then recorded in a list visitedFiles (lines 4 and 5), and
this list may be used by the workspace GUI upon receiving a user
request to view the history.

Next, openCompareEditorOnPage is invoked to open a com-
pare editor in the workspace GUI that shows the differences be-
tween the two files. The (simplified) method body is shown at lines
11-17. In this method, the newly created ResourceCompareInput
object is cached in a NavigationHistoryInfo object retrieved
from the current workbench page for future save or restore oper-
ations (lines 14-16). Caching this heavyweight input object is ac-
tually the cause of the leak: the structures of the two files keep
being created and referenced. As a result, the memory footprint
grows quickly, and Eclipse runs out of memory. Note that in the real
Eclipse code, this cache operation (at line 16) and the runCompare
method are in two different plugins, which makes it particularly
hard to diagnose the problem as these plugins are written by dif-
ferent groups of programmers. The two plugins communicate only
through public interfaces and it is unclear to programmers of one
plugin what side effects the other plugin can have. It is inter-
esting to see that despite the fact that the developers of plugin
org.eclipse.compare are aware that the input must be cleared
after the comparison (e.g., in fact, the comment at line 8 is from the
real code), these references are still unnecessarily kept somewhere
out of their scope.

While these plugins have been studied in previous work [&, 2(],
we start with the tier H approach to simulate what a programmer
would do at the beginning of a diagnostic task. Hence, our experi-
ence with this case, to a large degree, reflects how a programmer
unfamiliar with a program can use the tool to diagnose memory
leaks. We first need to identify a transaction and let the tool infer
unnecessary references for the transaction. This is easy: as the com-
parison is the regularly occurring event leading to the leak, it is a
natural idea to let the transaction cross the entire body of method
runCompare, as shown in Figure Pla). A transaction creation (at
line 2) takes two parameters: a transaction identifier object and a
mode in which the transaction works. The identifier object must be
unique per transaction and must be created before the transaction
starts. Here we choose s to be the identifier object, because s refers
to an ISelection object that is created per comparison operation
before runCompare runs. Constant /NFER informs the tool to run
in the inference mode. We found that the identifier object is usually
easy to find for a transaction: a transaction body often crosses a
method that is invoked on an existing object. In many cases, either
the receiver object or a parameter object of the method can be se-
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1 void runCompare(ISelection s) {
2 transaction(s, INFER){

3 flnput = new ResourceComparelnput (s); 1 void runCompare(ISelection s) {
4 visitedFiles.add(new String(s.left)); 2 i CHECK
5. visitedFiles.add(new String(s.right)); ransaction(s, A
3 flnput = new ResourceComparelnput (s);
6 openCompareEditorOnPage 4 share {
7 (finput, forkbenchPage); L ] 1 void runCompare(ISelection s) {
8 flnput= null; / don't reuse this input! 5 visitedFiles.add(new String(s.left)); 2 flnput = new ResourceComparelnput (
9 6 visitedFiles.add(new String(s.right));
} . 3 assertDB(finput, s);
10} ]
. . . ) 4 openCompareEditorOnPage
11 static void openCompareEditorOnPage 8 openCompareEditorOnPage 5 (finput, fworkbenchPage):
12 (CompareEditorinput input, 9 (finput, fWorkbenchPage); 6 finput=null; /f don’t reuse.. } '
13 IWorkbenchPage page){ 10 flnput=null; / don't reuse this input! '
14 NavigationHistoryInfo info = }
15 page.getNavinfo(); 12}
16 info.add(input); ...
17}

(a) Tier H: inferring unnecessary references

(b) Tier M: checking transaction properties

(c) Tier L: specific lifetime assert

Figure 2. Overview of the technique, illustrated using a simplified version of Eclipse bug #115789.

lected as the transaction identifier object (as long as it is created per
transaction and does not cross multiple transaction invocations).

For each transaction, its spatial boundary is specified by a pair
of curly brackets (i.e., {. . . }) and its temporal boundary is defined
by the lifetime of its identifier object. To find unnecessary refer-
ences, we focus on objects created within its spatial boundary, and
check their lifetimes against its temporal boundary. Informally, the
semantics of a transaction is such that each transaction-local ob-
ject must did] before the identifier object, and only shared objects
can live after the identifier object dies. In the inference mode where
a programmer does not explicitly specify local and shared objects,
our tool infers shared objects automatically: objects created within
the spatial boundary are treated as shared objects if they are still live
at the time the identifier object dies. Once an object is marked as
shared, the tool starts tracking its staleness and records a violation
if it is not used for a given period of time, based on the intuition that
objects that one transaction intends to share with other transactions
should be used outside their creating transaction. Violations are ag-
gregated and eventually reported in the order of their frequencies.

The following example shows a typical violation report that in-
cludes information about the transaction where the violating object
is created, its creation site, violation type, the number of times this
violation occurs, and the (heap) reference paths that lead to this ob-
ject at the time of the violation. Each line in a reference path shows
the information of an object on the path. While only one reference
path is shown here (for illustration) for this violation, multiple paths
were actually reported by the tool.

Transaction specified at:

CompareAction:runCompare (ISelection), 1ln 2
Violating objects created at:

CompareEditorInput:createQutlineContents

(widgets.Composite), 1ln 439

Violation type:

Objects shared among transactions are not used
Frequency: 4
Reference paths:

Type: ArraylList, created at: NavigationHistory:

<init>(WorkbenchPage), ln 44

U'In this paper, an object is considered to die immediately after it becomes
unreachable in the object graph.

--> Type: Object[], created at: ArrayList: <init>(I), 1ln 119
--> Type: NavigationHistoryEditorInfo, created at:
NavigationHistory: createEntry(...), 1ln 553
--> Type: ResourceComparelnput, created at: CompareAction:
runCompare (ISelection), 1n 3

This reference path makes it easy to explain why this Resource
CompareInput object is shared: the reference path exists because
the object is cached (transitively) by a NavigationHistory ob-
ject. However, this is not the only violation in the tier H report.
The two strings created at lines 4 and 5 (together with many other
objects) are also in the report as they are not used at all if there is
no user request to perform history-related operations. It takes some
time to inspect this report, as it contains a total of 36 violations.
By ranking violations (based on frequencies and other factors), it is
not hard for us to eliminate many of them that are lower on the list
and that are obviously not leaks. For example, after inspecting the
warnings, we determine that these small strings (and other similar
objects) are not the major cause of the leak, because the growth of
used memory is so significant that it is unlikely to be due to small
objects (especially because their frequencies are not significantly
higher).

As we obtain this knowledge (regarding these strings and other
irrelevant violating objects), we move down to tier M for a more
focused analysis. In Figure PIb), we explicitly mark these strings
(and others created by the two add calls) as shared (with a share
region) and let our tool run in checking mode. Objects created in
the transaction but not in the share region are marked (implicitly)
as transaction-local objects. Our tool then ignores objects marked
as shared and reports violations only when transaction-local ob-
jects are found live after the transaction identifier object dies. This
gives us a much cleaner report (with 4 violations), and of course,
the violation shown earlier appears in the report, indicating the
ResourceCompareInput object is referenced from somewhere
else.

After these two rounds of diagnosis, we have gained implemen-
tation knowledge (e.g., the general procedure of performing a com-
parison operation) and some insights into the problem (e.g., this
leak might be caused by an unnecessary reference somewhere in
NavigationHistory). During code inspection, we become inter-
ested in the comments in line 8 of the code: this statement has a



clear purpose of releasing the input object, but why did we see it is
still reachable in both tier M and tier H reports? Having this ques-
tion in mind, we decide to perform a detailed (tier L) diagnosis
using a lifetime assertion (e.g., assertDB asserts a “dies-before”
relationship), as shown in Figure Pi(c). This single assertion fails,
which confirms our suspicions.

After some code inspection (with the help of the reference path
associated with the violation), we found that NavigationHistory
allows a user to step backward and forward through browsed ed-
itor windows. It keeps a list of NavigationHistoryEntry ob-
jects, each of which points to an EditorInfo object that, in
turn, points to a CompareEditorInput object, the root of a data
structure that holds the diff results. NavigationHistory uses
a count to control the number of EditorInfo objects it caches,
and removes an EditorInfo if the count drops to zero. However,
NavigationHistory does not correctly decrement this count in
some cases, leading to unnecessary references.objects.

This example clearly shows the difficulty of diagnosing real-
world memory problems. The root cause of this bug is that the
NavigationHistory entries are cached and not getting removed
due to reference-counting problems. This occurs entirely on the
UI side. The developers of the compare plugin may have never
thought that calling a general interface to open an UI editor can
cause a big chunk of memory to be cached. The complexity of the
large-scale code base and the limited knowledge of each individ-
ual developer strongly call for LeakChaser’s step-by-step approach.
Such tool support can help a programmer who starts without in-
sights into the program or its leak, to systematically explore the
leaky behavior in order to pinpoint its cause.

3. Assertions and Transactions

This section presents a formalism to describe our analysis of unnec-
essary references. The presentation proceeds in three steps. First,
we define a simple garbage-collected language assert and its ab-
stract syntax. We next give a semantics of this language by focus-
ing on its traces. Each trace is a sequence of basic events (e.g., al-
loc, dealloc, and use) on objects, transaction events (e.g., start and
end), and assertions. Finally, we formulate assertion checking and
inference of unnecessary references as judgments on traces (i.e.,
trace validation). Note that in our implementation (discussed in
Section @), checking and inference are performed during GC runs.
Here the trace collection phase and the trace validation phase are
separated for ease of presentation and formal development.

Language assert The abstract syntax and the semantic do-
mains for language assert are defined in Figure Bl The program
has a fixed set of global reference-typed variables. An allocation
site has the form a = new ref®, where o stands for an allocation site
ID defined at compile time.

There are two types of assertions: assertDB and assertDBA.
assertDB(a, b) asserts that object (pointed to by) a must die be-
fore (or together with) object (pointed to by) b. object a must die
before a new object is created by object b’s allocation site (i.e.,
it is short for “Dies Before Allocation”). This assertion is useful
to enforce a “replaces” relationship between two objects. For ex-
ample, it can be used to enforce that an old (invalid) screen con-
figuration is appropriately released before a new screen configura-
tion is created upon repainting of an interface in a GUI program.
As another example, in Figure Plc), instead of using assertDB,
we can also write assertDBA(fInput, fInput) to assert that the
current ResourceCompareInput object must die before the next
ResourceCompareInput object (created by the same allocation
site) is allocated. While our framework includes a few other as-
sertions, they are not discussed because they can be implemented
using these two basic assertions.

Variables a, b c V
Allocation sites 0 e 0O
Instance fields f € F
Labels l € N
Assertions e = assertDB(a, b) | assertDBA(a, b)

Transactions ¢
Trans bodies tb ::
Trans modes m ::

transaction(a, m){ tb }
s;th|share { s} tb|e
CHECK | INFER

Statements s = a=0b|a=newref’|a=null|while...
|la=b.fla.f=ble|ge|if...|s:s
Program p = s;plt;ple
(a)
Labeled object o = o e o
Environment p e V—-ou{l}
Heap o € dxF—-oU{L}
Operation T = (6,A|D|U)|(6,m,S|E)*
| (S|E)® | (6a, 6v, DBA | DB)*®
Traces ! = 7,a]€
(b)

Figure 3. A simple assert language: (a) abstract syntax (b) se-
mantic domains.

To ease the formal development, a GC run can only be triggered
by a gc statement, which traverses the object graph to reclaim
unreachable objects. Note that we do not allow the nesting of
transactions. While this is easy to implement in our framework,
we have not found it helpful for pinpointing memory leak causes.

Each run-time object is labeled with its allocation site (e.g., 0)
and an integer (e.g., ), denoting the index of this object among all
created by the allocation site. Environment and heap are defined
in standard ways. A trace is a sequence of operations. There are
four types of operations, each of which is a tuple annotated with a
type symbol: o for object operation, ¢ for transaction operation, s
for share region operation, and a for assert operation. Each object
operation is an object and event pair, where an event can be either
A (i.e., Alloc), D (i.e., Dealloc), or U (i.e., Use). Each transaction
operation is a triple containing its identifier object, the mode (i.e.,
CHECK or INFER), and whether this operation corresponds to the
start of the transaction (S) or its end (E). A share region operation
has only a type that indicates whether it is the start or the end of
the region. Each assert operation contains two input objects and an
assertion type (DBA for assertDBA and DB for assertDB). While
the language does not explicitly consider threads, our analysis is
thread-safe as each transaction creation is a thread-local event.
Different transaction instances created by different threads can
exist simultaneously for the same transaction declaration. Trace
collection and validation are also performed on a per-thread basis.
A special symbol L is added to the heap and the environment to
represent a null value.

Language semantics  An operational semantics is given in
FigureEl A judgment of the form s, p, o, o } p’, o', o/ starts with a
statement s, which is followed by environment p, heap o, and trace
. The execution of s terminates with a final environment p’, heap
o', and trace o’. Trace concatenation is denoted by o. Rules NEW,
ASSERTDB, ASSERTDBA, and COMP are defined as expected.
In rules LOAD and STORE, trace « is augmented with an object
use event. In rule TRAN, for each transaction, the two transaction
events (i.e., S and E) are added in the beginning and at the end
of the trace for the execution of the sequence of statements in the
transaction. The share region events are handled in a similar way
(in rule SHAREREG). Rule GC removes unreachable objects from
the heap, and records deallocation events for them in the trace .



ao (6,A
o= newOb]Index (o)

a = new ref’, p, o, a |} pla — 9],0,a

o.allocsite = o

(NEW)

a=b.f,p,0,a | plaro(p(b).f)], o, a0 (p(b),U)? (LOAD)
a.f =b,p,0,a{ p,olp(a).f — p(b)], a0 (p(a),U)° (STORE)

S, 0,0, 0 (p(a)v m S>t ‘U plvglval
o = a’ o (p(a), m,E)"

TRAN
transaction(a, m){s}, p,o,a { p’,0’,a”’ ( )
s,p,0,a0 (S)° ol a o =o' o (E)®
p (74 p — 7 ) (SHAREREG)
Share{8}7 p, 0, ‘U p,0,Q
assertDB(a, b), p, 0, o | p, 0,0 (p(a), p(b), DB)* (ASSERTDB)

assertDBA(a, b), p, o, a | p, o, a o (p(a), p(b), DBA)® (ASSERTDBA)

tr = o{(6,D)°|6 € o A 6 ¢ reachable(p, o)}
V(6,D)° €tr:6¢ o o =aotr

/ !
ge,p,oallp, o’

(GC)

/ / / / / / /1 " "
slvpvo-va‘upvo-va 52,0 ,0 ,Q ‘Up )T,

Cowmp)
/1 1 1" (
51§327P70'704UP O,

Figure 4. Operational semantics.

Trace validation Checking and inference of unnecessary ref-
erences are formulated as judgments w,~y, T, ¢t F o~ W', v, 7,1
on traces. Here o is an execution trace, w is a stack of transactions
and share regions, + is a “diesBefore” map in which each pair (6q,
0p) has been asserted to have a “diesBefore” relationship (i.e., 04
must die before 0p), 7 is a “diesBeforeAlloc” map which contains
pairs (64, 0) where object 6, has been asserted to die before allo-
cation site o creates a new object, and ¢ maps each object that has
been marked shared (i.e., in inference mode) to its staleness value
(measured in terms of the number of transactions). As we currently
do not support nested transactions, w can contain at most one trans-
action identifier object (and one L symbol indicating the execution
is in a share region). Transaction nesting can be implemented easily
by allowing w to contain multiple identifier objects.

The validation rules are given in Figure Bl Validity checks are
underlined, and the remaining clauses (without underlines) are for
environment updates. Rule VALLOC first ensures that if an object
01 has been asserted to die before this allocation site creates a new
object (i.e., due to an assertDBA assertion), 01 is not live anymore.
A violation is recorded if there is such an object. If w is not empty
(meaning the execution is currently in a transaction) and top(w) is
not | (meaning we are not in a share region), a pair (6, top(w)) is
added to map y because, as mentioned earlier, all transaction-local
objects are asserted to die before the transaction identifier object,
and top(w) returns the identifier object of the current transaction.

VDEALLOC removes all entries (6, ) in the three maps upon
the deallocation of 6. If there is no running transaction, or the
running transaction is in CHECK mode, this rule checks if there
exists (01, 0) € . If this is the case, a violation is reported, because
01 is still live at the time 6 dies. If the running transaction is in
INFER mode, such 6; is marked as a shared object and the tool
starts to track its staleness: a pair (61, 0) is added to map ¢.

Rule VTRANS first pushes the transaction identifier object onto
stack w. It then adds a “diesBeforeAlloc” assertion on the identifier
object itself: adding a pair (6, 6.allocsite) indicates that this current
instance o is asserted to die before allocation site 6.allocsite cre-
ates a new object. As the lifetimes of transaction identifier objects
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where

w € Transaction stack: N—dU{L}

vy € “diesBefore” map: -0

w € “diesBeforeAlloc” map: -0

L € Staleness map for shared objects: ¢ — N

MODE: Mode of transaction (CHECK or INFER)

T: Threshold staleness value

Figure 5. Checking and inferring of unnecessary references.

are used to specify temporal boundaries of transactions, they are not
allowed to overlap. Lifetime overlapping can lead to ambiguity of
transaction behaviors. For each object inferred to be a shared object
(i.e., p € dom(v)), its staleness value is incremented. An object’s
staleness is defined as the number of transactions since it has been
marked as shared. At the end of each transaction (rule VTRANE),
this staleness value is checked against a user-defined threshold T.
A violation is reported if a shared object’s staleness exceeds this
threshold. This rule also pops stack w. This stack becomes empty
after this rule, indicating that no transaction is currently running.

VUSE removes from ¢ an object marked as shared: its stal-
eness is no longer tracked because the object is used. Rules
VSHARES/VSHAREE push/pop L onto/from stack w. Having L
on top of w means the execution is in a share region of a trans-
action. Rule VTRACE specifies the composition of two different
traces.

Our system allows one to specify transactions and assertions
simultaneously in a program. Transaction properties are translated
into basic assertions, which are checked together with assertions
specified by programmers. For example, upon the allocation of
each object 6 in a transaction (shown in VALLOC), 0 and the
transaction identifier object (i.e., top(w)) are added into map =y, and
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this relationship is checked in exactly the same way as a normal
assertDB assertion (shown in VDB).

4. Implementation

We have implemented LeakChaser in Jikes RVM 3.1.0, a high-
performance Java virtual machine [[1]. LeakChaser is publicly
available on the Jikes RVM Research Archive

Metadata and instrumentation LeakChaser adds one word to
the header of each object that tracks the allocation site informa-
tion of the object. There are two dynamic compilers in Jikes that
transform Java bytecode into native code. The baseline compiler
compiles each method when it first executes. When a method be-
comes hot (i.e., executed frequently), the optimizing compiler re-
compiles it at increasing levels of optimizations. LeakChaser adds
instrumentation to both compilers. LeakChaser adds instrumenta-
tion at each allocation site that stores an identifier for the source
code location (class, method, and line number) into the allocated
object’s extra header word.

Garbage collection  LeakChaser performs assertion checks
during garbage collection runs. It uses a table structure (discussed
shortly) to represent the assertions, and scans this table to perform
checks at the end of each GC run.

To implement quick assertion checks, we create an assertion ta-
ble, shown in Figure[d to record asserted “diesBefore” and “dies-
BeforeAlloc” relationships during the execution. Once a pair of ob-
jects is asserted, we create an assertion table entry for each of them,
and then update the LeakChaser-reserved header word in each ob-
ject with the address of the object’s corresponding assertion table
entry. The pointer to the source code information of the object ini-
tially stored in this space is moved to a field of this table entry.

For each table entry, we let its “assertion element pointer” field
point to a linked list of assertion elements, each of which represents
an object that has been asserted together with this object. For
example, for an assertion assertDB(a, b), we create an assertion
element (DB, idp, null) and store its address in a’s assertion table
entry. Once a new assertion assertDBA(a, c) is executed, a new
assertion element (DBA, id., null) is created and appended to the
list (i.e., now the previous element’s next field points to this new
element). In this way, all objects that have been asserted through
assert...(a,...) are in an assertion chain that is going to be
checked when a’s entry is traversed. We do not need to create an
assertion element representing a and associate it with b and c’s table
entries, as this unnecessarily duplicates information.

The current implementation of LeakChaser supports all non-
generational garbage collectors (e.g., MarkSweep, MarkCompact,
and Immix). At the end of each GC run, the assertion table is

2http://www.]jikesrvm.org/Research+Archive

scanned twice: the first scan marks entries that correspond to ob-
jects that are unreachable in this GC (i.e., dead objects), and the
second scan performs violation detection. Hence, in the second
scan, all table entries represent live objects. In order to slow down
the growth of the assertion table, table entries corresponding to un-
reachable objects are reclaimed and reassigned later to newly as-
serted objects. Our current implementation does not work correctly
in a generational garbage collector, as a nursery GC scans only part
of the heap and thus may cause LeakChaser to report either false
positives or false negatives.

For each entry, its assertion element chain is traversed. For an
element whose type is DB, if the object represented by this element
has been reclaimed, we report a violation. It is much more difficult
to check a DBA assertion. We create a global array (per thread) and
each entry in this array records the status of an allocation site.
Once an assertDBA(a, b) assertion is executed, the array entry
corresponding to b’s allocation site is marked as “ASSERTED”.
When this allocation site creates a new object, the status of its
array entry is changed to “ALLOCATED”. During the scanning of
the assertion table, for an assertion element (DBA, 4, *), a violation
is reported if the entry of this global array corresponding to the
allocation site of the object whose assertion table entry id is ¢
is “ALLOCATED”, because it creates a new object before the
asserted object dies. No false information can result from assertion
failures reported by the tool because the assertions directly specify
the liveness of objects (instead of reachability on the object graph)
and report violations only when definitive evidence is observed.

In this paper, we focus on the real-world utility of LeakChaser,
rather than its performance. Hence, this assertion table is scanned
during every GC. Future work coul incorporate sampling to reduce
overhead (i.e., scan the assertion table less frequently). To report
the reference paths that lead to a violating object, we modify the
worklist-based algorithm used by the tracing collector in a way so
that when a reachable object is added into the worklist, its reference
path (from which it is reached) is also added (to another worklist).
The length of this path can be determined by the user. We develop
a technique that aggregates violations of objects that are created by
the same allocation sites and whose reference paths match, so that a
violation is reported only after its (aggregated) frequency exceeds a
user-defined threshold value. LeakChaser filters out violations that
are associated with VM objects. Future work could consider more
powerful aggregation and ranking functions, such as a combination
of frequency, staleness, and the amount of memory leaked. In order
to make LeakChaser work for a generational GC, future work
could perform the two assertion table scans separately: the first
scan (that marks dead objects) would be performed at the end of
every GC, while the second scan (that checks assertions and detects
violations) would be performed only at the end of each full-heap
GC.

5. Case Studies

We have evaluated LeakChaser on six real, reported memory leaks.
While our ultimate goal is to evaluate with enterprise-level appli-
cations such as application servers and programs running on top of
them, Jikes RVM fails to run some larger server applications (such
as trade in the latest DaCapo benchmark set [4]).

For these six cases, we also applied Sleigh [§], a publicly avail-
able research memory leak detector for Java. Sleigh finds leaks by
tracking the staleness of arbitrary objects and reporting allocation
and last-use sites for stale objects.

For each case, we compared our report with the report gener-
ated by Sleigh, and found that first, for the same amount of running
time, information reported by our (even tier H) approach is much
more relevant than that reported by Sleigh. Sleigh requires much
more time to collect information and generate relatively precise re-
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Case #Tran #TO #LO #SO #V | #F
Diff 8 2048148 | 1707244 | 340904 | 36 14
Jbb 4346 256236 186752 69484 14 | 4
Editor 12 512471 506620 5851 2 13
WTP 20 2774556 | 2767237 | 7319 27 39
MySQL 10000 | 319529 170902 148627 | 11 0
Mckoi 100 2689366 | 2243888 | 445478 | 10 193

Table 1. Tier H statistics for transactions for the case studies.
Shown are the number of transaction runs (#Tran), the total number
of objects tracked (#TO), the number of transaction-local objects
(#LO), the number of shared objects inferred (#SO), the number of
violations reported after filtering (#V), and the number of violations
filtered by our filtering system (#F).

ports because it is designed for production runs and uses only one
bit per object to encode information statistically, whereas LeakCha-
ser tracks much more information for debugging and tuning (at a
higher cost). We did not run Sleigh for as much time as in the prior
work [], and thus Sleigh results are different from those reported
earlier. Second, our iterative technique produces more precise in-
formation at each tier, which eventually guides us to the root causes
of leaks.

Experience summary We found that it is quite easy to specify
transactions in large programs even for users who have never stud-
ied the programs before. From our experience using LeakChaser,
we generalize an approach that can be employed by performance
experts to select transactions. All large-scale applications we have
studied can be classified into two major categories: event-based
systems (e.g., web servers and GUI applications) and transaction-
based systems (e.g., enterprise Java applications and databases). An
event-based system often uses a loop to deal with different events
received and dispatch them to their corresponding handlers. For
such a system, our transaction can cross the body of the loop; that
is, the handling of each event is treated as a transaction. Each event
object can be used as the identifier object for the transaction. It is
much easier to determine a transaction for a transaction-based sys-
tem, as each “system transaction” in the original program can be
naturally treated as a transaction in LeakChaser.

A particularly useful feature of LeakChaser is that it allows pro-
grammers to quickly specify transactions at a client that interacts
with a complex system, without digging into the system to under-
stand its implementation details. For example, we diagnose Eclipse
framework bugs by specifying transactions in plugins (i.e., clients)
that trigger these bugs. Likewise, for databases such as MySQL and
Mckoi, we only need to create transactions at client programs that
perform database queries. This feature allows performance experts
like us (who are unfamiliar with these databases) to quickly get
started with LeakChaser. If we could not put transactions around
clients, it would be hard to even find a starting point in these sys-
tems that have thousands of classes and millions of lines of code.

Table [l shows transaction and assertion statistics for all six
cases. Despite the large number of assertions checked for each
benchmark, LeakChaser reports a small number of warnings. We
show statistics for tier H only, as it is the coarsest-grained approach
and thus runs the most assertions and reports the most violations.

Diff (Eclipse bug #115789) We quickly found this bug using
our three-tier approach and the detailed diagnosis process discussed
in Section 1

We have tried Sleigh on this program and the top four last-use
sites (i.e., where objects are last used) reported by Sleigh are in
class java.util.HashMap (e.g., in methods put and addEntry).

In this case, the sites leading to these HashMap operations point
back to method createContainer inclass org.eclipse. compare
.ZipFileStructureCreator, which indicates that the structures

of input files are cached but not used. At this point, it is completely
up to the programmer to find out why these structures become
stale and which objects reference them. Recall that even a violation
reported by our tier H approach shows the violating object is refer-
enced by a NavigationHistory object, which is actually the root
cause of the leak (shown in in SectionP)). According to [&], Sleigh
could have reported much more precise information if the program
was run for significantly more time. For example, LeakChaser re-
ported the root cause after only 8 structure diffs were performed,
while Sleigh may need more than 1000 diffs to report relatively
precise information regarding where the stale objects are created.
In addition, as we observed in our experiments, reporting reference
paths can be more helpful for finding leak root causes than report-
ing program locations, which are usually far from where the true
problem occurs.

Jbb SPECjbb2000 simulates an online trading system. It con-
tains a known memory leak that has been studied many times [3, |,
2(1,36]. This bug is caused by unnecessary caching of Order ob-
jects. To investigate the usefulness of LeakChaser in helping pro-
grammers unfamiliar with the code, we attempt to simulate what
these programmers would do. First, we need to understand the ba-
sic modules and functions of the program so that we can identify
regularly occurring events. This is not hard at all, as SPECjbb
is a transaction-based system where a TransactionManager
class runs different transactions types, and the transaction-creating
method is only a few calls away from method main. This method
contains a loop that retrieves a command from an input map per it-
eration, and creates and runs a transaction whose type corresponds
to the command received. This was the knowledge we obtained
quickly before trying the tier H approach.

Problem 1: unused objects We added a transaction that en-
closes the main Jbb transaction-creating method. Each Jbb transac-
tion object is used as the transaction identifier object of its corre-
sponding transaction. We ran the program on our modified VM and
let LeakChaser infer unnecessary references. The tool reports 14
violations (detailed statistics are shown in Table[I}). Most of the vi-
olating objects are String and History objects cached in orders,
and the rest are Order objects transitively referenced by District
objects. We inspected the source code and found that these String
objects are created to represent district information or names of or-
der lines, and the History objects are used to represent histories of
orders made by each company. These objects are indeed never used
in the program. We modified the program to eliminate these un-
used strings and History objects. The throughput improvements
are shown in Figure [a). We did not expect to find this problem,
which had not been reported before.

Problem 2: mutual references It was unclear to us what to
do about the Order objects reported above: while many are not
used again, some are retrieved by subsequent transactions. We
further inspect the code in order to run a more focused diagnosis.
The reference paths in our tier H report show that the unused
Order objects are referenced by Customer objects and then by
Company objects. Following this clue, we inspect all classes related
to Company and Customer. One clear piece of information that
we can take advantage of is the ownership relationships among
Company and Customer objects and objects referenced by them.
For example, each customer has an order array that stores orders
made by that customer. It is clearly problematic if a customer object
dies while an order made from this customer is still alive. Using this
information, we wrote 72 diesBefore assertions to assert such
relationships.

We easily added these assertions in constructors, wherever an
owned object is assigned to an owner object. Running this version
of the program resulted in 4 violations, all of which are related to
orders. By inspecting reference paths associated with these viola-
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Figure 7. (a) Throughput improvements after fixing the memory
problems detected in SPECjbb; (b) Comparison between the mem-
ory footprints of Mckoi before and after fixing the leak.

tions, we found the following three important problems. (1) Order
and Customer are mutually referenced, which explains the persis-
tent increase in Order objects, even though customers frequently
drop orders. (2) Customer objects are not released even after their
container arrays in Company die. They are not released because
Company holds unnecessary references to these objects. (3) Order
and Heap are mutually referenced, which prevents Heap objects
from being garbage collected. Fixing all of these problems (includ-
ing the unused String and History objects) led to both the elim-
ination of the quick growth of memory consumption and an overall
12.7% throughput improvement (from 13,644 to 15,372 ops/sec).
Previous work has not reported all of these problems that we found
using LeakChaser.

An important last-use site reported by Sleigh is in method
getObject of a BTree data structure that is used to retrieve Order
objects from customers. The associated calling contexts tell us that
this call is made transitively by processLine. While this is indeed
a method that needs to be fixed, the key to understanding the prob-
lem is learning about the mutual references among Order and other
classes. Without such reference information, it remains a daunting
task to identify the root cause and develop a fix.

Editor (Eclipse bug #139465) This reported memory leak
in Eclipse 3.2 occurs when opening a .outline file using a
customized editor and making selections on the “outline” page.
Objects created while displaying the file keep accumulating, and
Eclipse eventually crashes. This bug is still open because users can
rarely reproduce the leak. While we could not observe the reported
symptoms, we still ran the test case with LeakChaser. We wrote a

plugin that repeats multiple times the process of opening the editor,
making selections, and closing the editor. We added a transaction
in this plugin that crosses each such process (which manipulates
the editor), and used the editor object as the transaction identifier.

The tier H approach reported only two violations even when we
set a very small number (2) as the staleness threshold (see T in
Figure B)). For each violation, we could not find any object on its
associated reference paths that is related to the editor of interest.
Hence, we quickly concluded that there were no unnecessary ref-
erences for this case in Eclipse 3.2 on the Linux platform where
we ran the experiment: had there existed a problem with respect to
a transaction, it should have been reported by the tier H approach,
as the approach captures references to all objects that are shared
but not used. For this case, Sleigh reported four last-use sites, and
we found it difficult to verify whether or not these sites are rele-
vant. The key is to understand how these objects are reachable in
the heap, instead of where they are used in the program.

WTP (Eclipse bug #155898) According to the bug report for
this memory leak in the Eclipse Web Tool Platform (WTP), the
memory footprint grows quickly when copying and pasting large
text blocks in the JSP editor associated with the WTP framework.
This bug is still open because it cannot always be reproduced. One
developer suspected that “the bug might have already been fixed
by the addition of other features in a later version of WTP” one
year after it was reported. We reproduced the problem and saw the
memory footprint growth by writing a plugin that automatically
copies and pastes texts several times. Similarly to the previous
case, we added a transaction in the plugin and let it cross each
iteration that involves a pair of copy-and-paste operations. Our
tier H approach reported a total of 26 violations, among which 11
seemed clearly irrelevant to the problem (e.g., regarding Eclipse’s
Java Development Tools and other plugins).

To confirm this observation, we use this plugin to perform the
same copy-and-paste operations in a regular text editor in Eclipse,
which does not have memory problems. These 11 violations also
appeared in the generated report. Thus, they were safely discarded.
As this bug is caused by copying and pasting text, we focus on
string-related violations. Only one violation among the remaining
15 is about String objects, shown as follows:

Transaction specified at:
Quick_copy_pastePlugin:mouseUp (MouseEvent), 1ln 258
Violating objects created at:
StructuredTextUndoManager: createNewTextCommand (String, String),
1n 302
Violation type:
objects shared among transactions are not used
Frequency: 28
Reference paths:
Type: StructuredTextViewerUndoManager, created at:
StructuredTextViewerConfiguration
: getUndoManager (ISourceViewer), 1ln 469
--> Type: StructuredTextUndoManager, created at:
BasicStructuredDocument: getUndoManager(), 1ln 1823
-—> Type: BasicCommandStack, created at:
StructuredTextUndoManager : <init>(), 1n 160
--> Type: ArraylList, created at: BasicCommandStack: <init>(),
1n 67
--> Type: Object[], created at: ArrayList: ensureCapacity(I),
1n 176

This violation clearly shows that the strings are (transitively) refer-
enced by a text undo manager. This information quickly directed us
to classes responsible for undo operations. The cause of the prob-
lem was clear to us almost immediately after inspecting how an
undo operation is performed. In this JSP editor, all commands (and
their related data) are cached in a command stack, in case an undo
is requested in the future. There is a tradeoff between “undoability”
(i.e., how many commands are cached) and performance, especially
when there is a large amount of data being cached with each com-



mand. In this version of WTP (WTP 1.5 with Eclipse 3.2.0), this
command stack can grow to be very deep (it is not cleared even
when a save operation is performed), and thus, many strings can
be cached, leading to significant performance degradation. A later
version has limited the depth of this stack (for other purposes), im-
plicitly fixing this bug. For this case, we understood the problem
even without moving to tier M. We did not manage to run Sleigh
for this case, as Sleigh was developed on top of an older version of
Jikes RVM (2.4.2), which cannot run Eclipse 3.2.

MySQL leak This case is a simplified version of a JDBC
application that exhausts memory if the application keeps using
the same connection but different SQL statements to access the
database. Prior work reproduced this leak to evaluate tolerating
leaks [C], but no prior work reports the leak cause. The leak oc-
curs because the JDBC library caches already-executed SQL state-
ments in a container unless the statements are explicitly closed. We
create a transaction that crosses the creation and execution of each
PreparedStatement (in a loop). We executed 100 iterations, and
the tier H approach reported 10 violations, all of which were related
to PreparedStatement (i.e., regarding either the statement object
itself, or objects reachable from the statement).

From the associated reference paths, it took only a few min-
utes for us to identify the container that caches the statements:
a HashMap created at line 1486 (in the constructor) of class
com.mysql. jdbc.Connection. For this case, Sleigh reported
warnings after the program ran for 303 iterations, significantly
longer than for LeakChaser. Sleigh reported a few last-use sites
where PrepareStatement objects are last touched. We did not
find the HashMap information in Sleigh’s report, which is the key
to tracking down this leak bug.

Mckoi leak Mckoi is an open-source SQL database system
written in Java (http://www.mckoi.com). It contains a leak
that previous work reproduced to evaluate leak survival tech-
niques [9, [1(]. However, none of the existing work has inves-
tigated the root cause of the leak. We reproduced the leak by
writing a client that repeatedly (100 times) establishes a connec-
tion, executes a few SQL queries, and closes the connection. We
started with our tier H approach and created a transaction that
crosses each iteration of this process in the client. Our tool re-
ported 10 warnings, all regarding objects that are reachable from
a thread object of type DatabaseDispatcher. In all the warn-
ings reported, this thread object references a DatabaseSystem
object, which transitively caches many other never-used objects.
By inspecting only the constructors of DatabaseSystem and
DatabaseDispatcher, we found that they are mutually refer-
enced. The creation of each DatabaseSystem object explicitly
creates a DatabaseDispatcher object and runs this thread in the
background. There are two major problems:

(1) DatabaseDispatcher runs in a while (true) loop, which
means no DatabaseSystem object can ever be garbage col-
lected even though its dispose method is invoked. To address
this problem, we broke this reference cycle when dispose is
invoked on DatabaseSystem. Next, in DatabaseDispatcher,
we modified the while (true) loop to terminate if its referenced
DatabaseSystem object becomes null. This modification resulted
in a very slight improvement in performance, leading us to believe
there must be a bigger problem.

(2) A DatabaseSystem object can be created in two situations.
(a) A new database needs to be started (e.g., a connection is estab-
lished); (b) a method dbExists (that checks whether a database
instance has already been there) is called. In every iteration, two
DatabaseSystem objects are created but only one of them gets
disposed. The one created by dbExists is never reclaimed, be-
cause dispose is not explicitly invoked on this object, which we
quickly discovered by using a call graph generated by an IDE tool.

The developer took it for granted that this object would be garbage
collected, but it is referenced by a live thread. We added a call that
invokes dispose at the end of method dbExists.

For this case, all warnings generated by Sleigh are about ob-
jects cached (transitively) by DatabaseSystem, and they are far
away from the leaking thread. It would be difficult to understand
why these objects are not garbage collected without appropriate
reference paths, as reported by LeakChaser. The memory footprint
of the database before and after the leak is fixed is shown in Fig-
ure [(b). The original version of the program ran out of memory at
the 106" iteration, while the modified version ran indefinitely (as
far as we could tell).

These six case studies demonstrate that developers do not need
to have much implementation knowledge in order to diagnose leaks
with LeakChaser. LeakChaser generates more relevant reports than
Sleigh: it is easier to find the root cause from reference chains that
cache a violating object, than from the allocation or last-use site of
the object.

6. Overhead

We evaluated the performance of our technique using 19 programs
from the SPECjvm98 [34] and DaCapo [7] benchmarks, on a dual-
core machine with an Intel Xeon 2.83GHZ processor, running
Linux 2.6.18. We ran each program using the large workload.

Table Pl reports the time and space overheads that our tracking
infrastructure incurs on normal executions (without assertions or
transactions written). The overhead measurements that we show in
this section are obtained based on a (high-performance) FastAdap-
tivelmmix configuration that uses the optimizing compiler and the
state-of-the-art Immix garbage collection algorithm [€].

The LeakChaser infrastructure slows programs by less than 10%
on average using the optimizing compiler and an advanced garbage
collector. Much of the overhead comes from extra operations dur-
ing GC and the barrier inserted at each object reference read to
check the use of the object. Column (b) of Table Plreports the de-
tailed GC slowdown caused by our tool, which is 2.3, averaged
across the 19 programs. The space overheads, reported in column
(c) of Table @ are less than 10%, primarily due to the extra word
added to the header of each object. In some cases, the peak mem-
ory consumption for LeakChaser is even lower than that for the
original run (i.e., OS is smaller than 1), presumably because GC is
triggered at a different set of program points that happens to have a
lower maximum reachable memory size.

The overhead of assertion checking and inference is reported in
Table B The overall running time measurements are available only
for Jbb, MySQL, and Mckoi, as the other three cases are all based
on Eclipse IDE operations. Note that in a run with 4,346 transac-
tions and 442,988 objects (shown in Table [, our tool slows the
program 6.6 and 5.5x overall for the two configurations. Simi-
larly to TableD] the overhead can be larger if we consider only GC
time. For example, for Diff, a 2.8 x slowdown can be seen for GC
time for FastAdaptivelmmix. Note that these overheads have not
prevented us from collecting data from any real-world application.
In a production setting, run-time overhead can be effectively re-
duced by sampling (i.e., the current sampling rate is 100%). Future
work could also define a tradeoff framework between the quality of
the reported information and the frequency of assertion table scan-
ning (similar to QVM [4]), and find an appropriate sampling rate
that can enable the reporting of sufficient information at acceptably
low cost.

7. Related Work

While there exists a large body of work on detecting Java memory
leaks, ours is the first semantics-aware approach that uses multiple
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Bench (a) Overall time (b) GC time (c) Space

T1 To or G Go oG S1 So oS
check 0.033 | 0.068 | 2.1 0.016 | 0.033 | 2.0 11.4 10.3 0.9
compr 9.4 9.5 1.0 0.016 | 0.033 | 2.0 17.9 18.0 1.0
jess 22 2.4 1.1 0.022 | 0.049 | 2.2 48.9 58.4 1.2
db 4.9 5.0 1.0 0.024 | 0.062 | 2.6 222 24.9 1.1
javac 2.1 2.4 1.1 0.030 | 0.064 | 2.1 98.1 99.0 1.0
mpeg 6.2 6.2 1.0 0.020 | 0.039 | 2.0 19.4 19.8 1.0
mtrt 1.6 1.6 1.0 0.031 | 0.081 | 2.6 46.5 43.6 0.9
jack 1.7 1.8 1.0 0.025 | 0.050 | 2.0 79.6 76.8 1.0
antlr 38.7 43.2 1.1 0.032 | 0.074 | 2.3 53.5 57.3 1.1
bloat 98.3 1059 | 1.1 0.073 | 0.169 | 2.3 515.1 | 5200 | 1.0
chart 19.7 21.4 1.1 0.084 | 0.232 | 2.8 367.4 | 4794 | 1.3
eclipse 150.8 | 157.5 | 1.0 0.207 | 0.465 | 2.2 512.4 | 532.7 | 1.0
fop 1.4 1.8 1.3 0.064 | 0.15 2.3 107.6 | 102.2 | 0.9
hsqldb 9.3 16.4 1.8 0.331 | 1.21 3.7 420.5 | 4326 | 1.0
jython 45.6 48.6 1.1 0.077 | 0.172 | 2.2 119.7 | 137.8 | 1.2
luindex 353 37.7 1.1 0.031 | 0.070 | 2.3 45.5 49.8 1.1
lusearch 7.8 8.1 1.0 0.038 | 0.088 | 2.3 105.0 | 1295 | 1.2
pmd 229 23.6 1.0 0.055 | 0.127 | 2.3 1153 | 1575 | 14
xalan 32.3 39.5 1.2 0.066 | 0.145 | 2.2 2142 | 209.0 | 1.0
GeoMean|| - - 1.1 - - 2.3 - - 1.1

Table 2. Time and space overheads incurred by our infrastructure for the FastAdaptivelmmix configuration. Shown in column (a) are the
original overall execution times (71) in seconds, the execution times for our modified JVM (732), and the overheads (OT) in times (X).
Column (b) reports the GC times and overheads: G and G2 show the average times for each GC run in the original RVM and our modified
RVM, respectively. OG reports the GC overheads as G2/G1. Memory consumption and overheads are shown in column (c): S and S2 are the
maximum amounts of memory used during the executions in the original RVM and our RVM, respectively. OS reports the space overheads

as S1/S2 .

Bench (a) Overall time (b) GC time (c) Space

T1 T> or G1 Go oG S1 So oS
Diff - - - 0.27 0.75 2.8 5342 | 5344 | 1.0
Jbb 50.7% | 9.2%* 5.5 0.008 | 0.056 | 7.0 313.7 | 3153 | 1.0
Editor - - - 0.15 0.41 2.7 300.5 | 367.2 | 1.2
WTP - - - 0.22 0.58 2.6 52.7 52.9 1.0
MySQL 6.8 14.0 2.1 0.045 | 0.108 | 2.4 17.1 17.7 1.0
Mckoi 165.6 | 172.2 | 1.0 0.046 | 0.154 | 33 129.2 | 1442 | 1.1
GeoMean - - 2.3 - - 32 - - 1.0

Table 3. Overheads for the cases that we have studied under FastAdaptivelmmix. * indicates that we measure throughput (#operations per

second) instead of running time. For both MySQL and Mckoi, a fixed number of iterations (100) was run for this measurement.

layers to help programmers at different levels of code familarities to
specity, check, and infer unnecessary references. Related work falls
into four major categories: leak detection, bloat analysis, checking
of unconventional properties, and GC assertions.

Dynamic analysis for memory leak detection Dynamic anal-
ysis [&, [13, 114, 16, 117, [18, 20, 23, 2§&, 29] has typically been used
to detect memory problems. As described in Sections[lland Bl ex-
isting techniques have a number of deficiencies. Commercial leak
detectors such as [, 2&] enable visualization of heap objects of
different types, but do not provide the ability to pinpoint the cause
of a memory leak. Existing research detectors use growing types
[24, 23] (i.e., types whose number of instances continues to grow)
or object staleness [§, [14] to identify suspicious data structures that
may contribute to a memory leak. However, in general, a memory
leak caused by redundant references is due to a complex interplay
of memory growth and staleness and possibly other factors. In ad-
dition, these techniques are often unaware of high-level semantics,
and perform whole-program profiling; this leads to less relevant in-
formation in the generated reports. Xu and Rountev [3€] introduce
a technique that profiles container behaviors to detect containers
that cache large numbers of unused objects. Novark et al.. [27] find
memory leaks and bloat in C/C++ programs by segregating objects
based on their allocation contexts and staleness. Recent work [[14]

uses a tainting framework to propagate relevant information in or-
der to identify leaking objects for C/C++ programs.

Fundamentally different from these techniques, our work presents
an assertion framework that allows programmers to explicitly ex-
press their interests (i.e., related to high-level semantics), based
on the insight that developers’ knowledge is essential for a leak
detector to produce highly relevant reports.

Software bloat analysis As a more general problem [26€, 4(],
software bloat analysis [4, 21, 22, 25,132, 34, 37, 38, 39] attempts
to find, remove, and prevent performance problems due to inef-
ficiencies in the code execution and the use of memory. Prior
work [22,24] proposes metrics to provide performance assessment
of use of data structures. Mitchell et al. [24] propose a manual ap-
proach that detects bloat by structuring behavior according to the
flow of information, and their later work [22] introduces a way to
find data structures that consume excessive amounts of memory.
Work by Dufour et al. [[13] uses a blended escape analysis to char-
acterize and find excessive use of temporary data structures. By
approximating object lifetimes, the analysis has been shown to be
useful in classifying the usage of newly created objects in the prob-
lematic areas. Shankar et al. propose Jolt [37], an approach that
makes aggressive method inlining decisions based on the identifica-
tion of regions that make extensive use of temporary objects. Work
by Xu et al. [3§] detects memory bloat by profiling copy chains



and copy graphs. Other work [31] dynamically identifies inappro-
priately used Java collections and recommends to the user those
that should really be used. The technique presented in our work
can also be considered as a bloat analysis, and it can be used to find
a specific type of bloat caused by unnecessary references.

Asserting and inferring unconventional properties The
Java Modeling Language [2] contains a few expressions (such
as \duration and \space) that allow programmers to specify
performance-related properties of a program. Burnim and Sen pro-
pose an assertion framework [[L1] to specify that regions of a par-
allel program behave deterministically despite non-deterministic
thread interleavings. They later propose to dynamically infer de-
terministic specifications for parallel programs from the execution,
given a set of inputs and schedules [12].

GC Assertions, QVM, and Merlin  Closest to our work are
heap property assertion frameworks such as GC Assertions [3, 3(]
and QVM [, 35]. For example, one can explicitly specify at a
certain program point that an object should be dead soon (i.e,
assertDead), or that an object must be owned by another object
in the object graph (i.e., assertOwns). While such assertions can be
quite useful in helping diagnosis, they are limited in the following
three important aspects related to leak detection.

First, reachability information is used to approximate the live-
ness of objects, which may result in false positives. For example,
assertOwns (a, b) asserts a reachability relationship between ob-
jects a and b, and it fails when b can be reached in a path that does
not contain a in a certain GC run. However, it is possible that ob-
ject b becomes unreachable from object b in one GC, while later b is
owned by a again. Second, because a GC assertion predicts a future
heap state (i.e., the state at the closest GC run) and the global reach-
ability information evolves all the time, whether or not this asser-
tion will fail depends significantly on when and where the next GC
occurs, which may in turn be affected by many factors, such as the
initial and maximum heap sizes and specific GC implementation
strategies. Third, these approaches are intended for programmers
who have sufficiently deep program knowledge and insights. In
real-world software development, only a handful of programmers
can have such knowledge, especially when a performance problem
occurs in program code that is not written by themselves.

Our work solves the first and second problems by allowing
programmers to specify objects’ lifetime relationships instead of
reachability properties. In order to tackle the third problem, we use
a combination of assertion checking and transaction property infer-
ence to allow programmers with little application-specific knowl-
edge to quickly identify the cause of the problem.

The GC Assertions [3] framework includes a block-structured
assert-alldead assertion, which asserts that all objects allocated in
the block must be dead by the end of the block. While it is related
to the transaction abstractions proposed in this paper, there are
two important distinctions between them. First, assert-alldead does
not allow objects in the specified structure to escape the structure,
while our approach allows checking and inferring shared objects,
providing more flexibility for diagnosing problems. Second, our
transaction abstraction separates temporal and spatial scopes of the
structure, while these scopes are combined in this earlier work.

Merlin [[1€9] is an efficient algorithm that can provide precise
time-of-death statistics for heap objects by computing when ob-
jects die using collected timestamps. LeakChaser could potentially
exploit this technique in the future to capture assertion failures be-
tween GCs, as we currently report an assertion failure only when it
is actually witnessed during a GC run.

8. Conclusions and Future Work

This paper presents the first framework that allows programmers
with little program knowledge to quickly find the root cause of a

memory leak, by bringing high-level program semantics into low-
level leak detection. The most significant advantages of this work
over existing Java leak detection tools are that (1) the approach
uses lightweight user annotations to improve the relevance of the
generated reports, and can provide semantics-related diagnostic in-
formation (e.g., which object escapes which transaction), and (2)
it is designed in a multi-tier way so that programmers at differ-
ent levels of skill and code familiarity can use it to identify per-
formance problems. Our experience shows that the three-tier tech-
nique is quite effective: the tool can help a programmer identify the
root cause of a leak after an iterative process of specifying, infer-
ring, and checking object lifetime properties. For the case studies
we conducted, the tool provided more relevant information than an
existing memory leak detector Sleigh. For example, using the tool,
we quickly found the root causes of memory issues in the analyzed
programs, including both known memory leaks and problems that
have not been reported before. While LeakChaser incurs relatively
large overhead (2.3 x on average), we found it acceptable for de-
bugging and performance tuning.

The assertions and transaction constructs may be easily incor-
porated into the Java language so that they can be used in a pro-
duction JVM to help detect memory problems. Similarly to func-
tional specifications that are used widely in program testing and
debugging, writing performance specifications can have significant
advantages. For example, it could enable unit performance testing
that can identify performance violations even before degradation
is observed. In addition, performance specifications (similar to the
ones described in this paper) may help bridge the gap between per-
formance analysis and the large body of work on model checking
and verification, so that one may be able to prove (statically) a pro-
gram is “bloat-free” or “bloat-bounded” with respect to the perfor-
mance specifications provided.

A possible direction of future work would be to investigate
such relationships in order to prevent small performance issues in
the early stage of software development, before they pile up and
become significant.
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