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Abstract

The Java memory model provides strong behavior guarantees for
data-race-free executions. However, it provides very weak guaran-
tees for racy executions, leading to unexpected, unintuitive behav-
iors. This paper focuses on how to provide a memory model, called
statically bounded region serializability (SBRS), that is substan-
tially stronger than the Java memory model. Our prior work intro-
duces SBRS, as well as compiler and runtime support for enforcing
SBRS called EnfoRSer. EnfoRSer modifies the dynamic compiler
to insert instrumentation to acquire a lock on each object accessed
by the program. For most programs, EnfoRSer’s primary run-time
cost is executing this instrumentation at essentially every memory
access.

This paper focuses on reducing the run-time overhead of enforc-
ing SBRS by avoiding instrumentation at every memory access that
acquires a per-object lock. We experiment with an alternative ap-
proach for providing SBRS that instead acquires a single static lock
before each executed region; all regions that potentially race with
each other—according to a sound whole-program static analysis—
must acquire the same lock. This approach slows most programs
dramatically by needlessly serializing regions that do not actually
conflict with each other. We thus introduce a hybrid approach that
judiciously combines the two locking strategies, using a cost model
and run-time profiling.

Our implementation and evaluation in a Java virtual machine
use offline profiling and recompilation, thus demonstrating the po-
tential of the approach without incurring online profiling costs. The
results show that although the overall performance benefit is mod-
est, our hybrid approach never significantly worsens performance,
and for two programs, it significantly outperforms both approaches
that each use only one kind of locking. These results demonstrate
the potential of a technique based on combining synchronization
mechanisms to provide a strong end-to-end memory model for Java
and other JVM languages.
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1. Introduction

Itis challenging to develop, debug, and test multithreaded programs
largely because of the many possible program behaviors that a con-
current execution can have. In particular, modern language memory
models—including the Java memory model and thus the memory
model for other Java platform languages—provide very weak guar-
antees for executions with data races (Section 2.1) [2, 3, 9, 25, 35].
This situation represents a serious impediment to reasoning about
program behavior and providing strong semantic guarantees.

Much prior work has focused on guaranteeing sequential con-
sistency (SC) [21]. Although SC is stronger than the Java memory
model, it fails to match programmers’ expectations and thus does
not eliminate many unexpected behaviors [2]. Furthermore, enforc-
ing end-to-end' SC has proven expensive (Section 2.1).

In prior work, we introduced a memory model called szatically
bounded region serializability (SBRS) that guarantees serializabil-
ity of regions that are intraprocedural, acyclic, and synchronization
free (Section 2.1) [31]. Our prior work introduces an enforcement
mechanism for SBRS called EnfoRSer that transforms the compiled
program so that it acquires a per-object lock at each memory access
(Section 2.2) [31]. A difficult-to-avoid cost of EnfoRSer is that in-
strumentation must acquire a lock at most memory accesses. Fur-
thermore, EnfoRSer modifies the compiler to transform statically
bounded regions to execute either idempotently or speculatively;
the transformed code adds run-time overhead (Section 2.2). In this
paper, we refer to EnfoRSer’s per-object locks as dynamic locks be-
cause they are associated with run-time objects, and we refer to the
version of EnfoRSer that uses dynamic locks as EnfoRSer-D.

This paper’s goal is to provide SBRS with lower overhead
than prior work achieves. The high-level direction is to reduce the
instrumentation cost for regions that conflict rarely, if ever. The
mechanism for reducing instrumentation is to enforce atomicity
using coarse-grained locking at the region level, instead of the
object level. In order for a region to ensure atomicity by acquiring
a lock, the approach must ensure that two regions acquire the same
lock if they might race with each other (i.e., if the regions each have
one of a pair of potentially racy accesses). We refer to these locks as
static locks because they are associated with static program sites. A
site is a static memory access; it is identified uniquely by a method
and a bytecode index. We refer to EnfoRSer that uses static locks

! Enforcing a memory model end-to-end means the system enforces the
memory model with respect to the original program. That is, both the
compiler and hardware must respect the memory model.



to guard regions as EnfoRSer-S. EnfoRSer-S’s approach often leads
to over-synchronization that harms scalability significantly. Static
locks thus must be applied judiciously: they should be applied
to a region only when they will not incur significant unnecessary
contention; other regions should use dynamic locks.

We thus introduce a hybrid version of EnfoRSer called EnfoRSer-
H that selectively applies static and dynamic locks. EnfoRSer-H
makes use of an assignment algorithm that chooses, for each site,
whether to use static or dynamic locks, subject to the constraint
that all sites that race with each other must use the same kind of
locking. The assignment algorithm makes its decisions based on a
cost model and run-time profiling information.

We have implemented EnfoRSer-S and EnfoRSer-H in Jikes
RVM, a high-performance Java virtual machine (JVM) [5, 6], on
top of our existing EnfoRSer-D implementation [31]. To avoid the
engineering challenge of invalidating and recompiling all methods
affected by run-time locking changes, our evaluation instead uses a
methodology that runs two iterations of the application: the first it-
eration collects profile information using static locks only; then the
JVM recompiles all methods based on the assignment algorithm;
and finally the second iteration executes using this new locking
scheme.

Our evaluation compares the run-time characteristics and per-
formance of EnfoRSer-D, EnfoRSer-S, and EnfoRSer-H on bench-
marked versions of large, real, multithreaded applications [8].
EnfoRSer-D’s use of dynamic locks minimizes contention but in-
curs lock acquire overhead at each potentially racy memory access.
On the other hand, EnfoRSer-S’s exclusive use of static locks re-
duces the number of lock acquire operations but leads to high con-
tention and thus substantial run-time slowdowns. By hybridizing
dynamic and static locks, EnfoRSer-H is able to get the benefits of
both approaches. Most programs cannot benefit much from static
locks, so EnfoRSer-H performs almost identically to EnfoRSer-D;
notably, EnfoRSer-H does not harm performance in these cases
but instead correctly chooses to use dynamic locks. Since most
programs fall into this category, EnfoRSer-H’s overall improve-
ment over EnfoRSer-D is modest: EnfoRSer-H incurs 26% run-
time overhead on average, compared with 27% for EnfoRSer-D.
However, for a few programs that can benefit from static locks,
EnfoRSer-H’s selective use of static locks leads to substantially
lower run-time overhead than EnfoRSer-D. Overall, EnfoRSer-H
demonstrates opportunities for exploiting low-contention parts of
applications to provide a strong memory model, SBRS, with lower
overhead than prior work.

2. Background and Motivation

This section first describes existing memory models, in order of
increasing strength, concluding with the statically bounded region
serializability (SBRS) memory model. Section 2.2 describes our
prior work’s compiler- and runtime-based approach for enforcing
SBRS and motivates its performance limitations and opportunities
for improvement.

2.1 Memory Models

A memory model defines the possible values for a load from shared
memory [2]. This paper is concerned with language memory mod-
els that must be enforced end-fo-end, i.e., must be enforced by the
compiler and hardware with respect to the original source-level
program—in contrast to hardware memory models, which only
guarantee behaviors with respect to the compiled program.

An execution has a data race if two accesses are conflicting
(they access the same shared, non-synchronization variable, and at
least one is a write) and not ordered by the happens-before relation,
a partial order that is the union of thread and synchronization
order [20].

Generally speaking, memory models—including all of the
memory models we discuss here—provide strong semantic guar-
antees for data-race-free (DRF) executions. In particular, DRF
executions provide serializability of synchronization-free regions
(SFRs) [2, 3, 23]. However, memory models differ in the guaran-
tees they provide for racy (non-DRF) executions.

DRF0. The data-race-free-0 (DRFO) memory model provides
weak or undefined semantics for racy executions [3]. The Java and
C++ memory models are both variants of DRFO [2, 9, 25].

Despite much effort, languages and analyses fail to help elimi-
nate all data races (e.g., [13, 17, 27]), so programs still have data
races [2, 30]. Furthermore, programmers sometimes introduce data
races intentionally for performance [32].

Java memory model. The Java memory model (JMM) defines the
behavior of shared memory accesses on programs running in a Java
virtual machine (JVM) [25]. Thus, the JMM applies not only to
Java programs but also to programs written in other Java platform
languages such as JRuby and Scala.

The JMM provides weak semantics for racy executions that
preserve memory and type safety. The JMM introduces a concept
called causality that must be respected by compiler transforma-
tions in order to avoid so-called “out-of-thin-air results” (a con-
cept that is not well defined but refers to executions that experts
generally agree should be avoided and can violate memory and
type safety) [10, 25, 35]. Although the JMM guarantees memory
and type safety, it still permits unintuitive results such as loads of
“stale” and “future” stored values, i.e., threads can observe other
threads’ events happening in different orders.

Furthermore, researchers have shown that common JVM com-
piler optimizations can violate JMM causality rules and permit out-
of-thin-air results [35]. Thus, JVMs do not actually enforce even
the weak guarantees of the JMM, and no one knows how to guar-
antee causality (and thus memory and type safety) without severely
limiting compiler optimizations [10, 35].

Sequential consistency. The sequential consistency (SC) mem-
ory model guarantees that threads’ operations appear to interleave
in a global order that respects program order [21]. While SC is
stronger than the JMM, end-to-end SC does not provide a com-
pelling reliability—performance tradeoff. SC is difficult for pro-
grammers to reason about, and it does not eliminate many unex-
pected behaviors. Adve and Boehm argue that “programmers do
not reason about correctness of parallel code in terms of interleav-
ings of individual memory accesses, and sequential consistency
does not prevent common sources of concurrency bugs ...” [2].
Despite being a fairly weak model, SC is not particularly cheap
to provide: providing end-to-end SC requires restricting optimiza-
tions that would reorder memory accesses in both the compiler and
hardware.

Statically bounded region serializability. Our prior work pro-
poses a memory model based on region serializability: dynamically
executed regions of code appear to execute together in program or-
der, i.e., regions execute atomically. In our model, called statically
bounded region serializability (SBRS), regions are synchronization
free, intraprocedural, and acyclic [31]. That is, regions are bounded
at synchronization operations, method calls, and loop back edges.
SBRS offers a compelling reliability—performance tradeoff.

SBRS allows fewer behaviors than SC, simplifying the job of
static and dynamic program analyses. Furthermore, SBRS enforces
atomicity of regions that programmers may already expect to ex-
ecute atomically; it eliminates real (atomicity) bugs that SC can-
not eliminate [31]. Because regions are statically and dynamically
bounded, SBRS is cost effective to enforce in software, as we de-
scribe next.



2.2 Enforcing SBRS

This section describes our prior work’s approach for enforcing
SBRS [31], which this paper refers to as EnfoRSer-D in order to
distinguish its use of dynamic locks (locks associated with run-time
objects) from the static locks (locks associated with static memory
accesses) introduced in this paper. EnfoRSer-D modifies the JVM’s
dynamic compiler to transform statically bounded regions so that
they execute atomically at run time. We note that these transforma-
tions are performed automatically during the JVM’s just-in-time
(JIT) compilation, so they are not visible to programmers, and pro-
grammers do not need to be aware of them.

EnfoRSer-D modifies the compiler to partition the program into
statically bounded regions: regions bounded at synchronization op-
erations, method calls, and loop back edges. To preserve SBRS, the
compiler must not reorder memory accesses across region bound-
aries.

The general properties of EnfoRSer-D mentioned so far apply
to all versions of EnfoRSer described in the paper. The rest of this
section applies specifically to EnfoRSer-D.

EnfoRSer-D’s dynamic locks and atomicity transformations.
EnfoRSer-D’s compiler transformation inserts instrumentation into
regions to enforce two-phase locking: before each memory access,
the compiler inserts instrumentation that acquires a per-object lock
on the accessed object (or static field). To support per-object locks,
EnfoRSer-D extends the JVM’s object model so that each object
has an extra header word and each static field has a class-level
shadow word. A region does not release its acquired locks until the
end of the region.

Two-phase locking guarantees atomicity, but it can deadlock
if two regions attempt to acquire the same locks in different or-
ders. EnfoRSer-D avoids deadlock—and reduces synchronization
costs—by using biased reader—writer locks [12] for its per-object
locks. These locks have the important property that a thread only
releases locks when another thread wants to acquire the same lock.
In other words, when a lock is not contended, a thread, T1, does
not release the lock at the end of a region, avoiding the overhead of
reacquiring the lock if the thread accesses the same object again.
When another thread, T2, wants to acquire the lock (because it
wants to access the object protected by the lock), thread T1 will
release the lock at one of two times:

1. at the end of the region T1 is currently executing

2. if T1 attempts to acquire another lock held by any other thread

In the first situation, region atomicity is preserved, as the lock is
held for the duration of the region. The second situation indicates
a potential deadlock, so T1 “gives up” the lock to T2, allowing the
latter to acquire the lock and breaking any locking cycle. Unfor-
tunately, if this second situation arises, the principle of two-phase
locking has been compromised—T1 did not hold its locks for the
duration of the region—so region atomicity may have been vio-
lated.

To handle this potential violation of region atomicity, EnfoRSer-
D’s compiler transformation transforms regions so that they can
safely restart whenever the executing thread gives up an acquired
lock in the middle of a region. EnfoRSer-D uses one of two trans-
formations. The idempotent transformation transforms regions so
that they execute idempotently (i.e., without side effects) until they
have successfully acquired all per-object locks. This transforma-
tion involves deferring the region’s stores until the end of the re-
gion, which the transformation accomplishes by generating correct
code using static program slicing in order to handle conditionally
executed regions and potentially store—load aliasing. The specu-
lation transformation transforms regions so they execute specula-
tively, backing up executed stores, so that the region can restore
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Figure 1. A statically bounded region instrumented by EnfoRSer-
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Figure 2. Region from Figure 1 after EnfoRSer-D performs its
speculation transformation.

its initial state if it needs to restart. The speculation transformation
involves significant complexity when generating restore code, rely-
ing on static program slicing to generate correct code. (We note
that although these approaches resemble software transactional
memory [19], EnfoRSer-D’s focus on statically and dynamically
bounded regions enables significantly better performance: stati-
cally bounded regions enable simpler instrumentation involving lo-
cal variables instead of in-memory logs, and dynamically bounded
regions permit EnfoRSer-D to forgo tracking read/write sets and
instead restart conservatively on any potential conflict [31].)

Example. Figure 1 shows a statically bounded region after it has
been instrumented with reader—writer lock acquires by EnfoRSer-
D.2 The points <BP>, <BP1>, and <BP2> each represent a

2 Figures 1 and 2 are reused from our prior work [31].



region boundary point: a synchronization operation, method call,
or loop back edge.

Figure 2 shows the region from Figure 1 after EnfoRSer-D’s
speculation transformation. We show the speculation transforma-
tion since it generally adds lower run-time overhead than the idem-
potent transformation [31], and this paper uses EnfoRSer-D exclu-
sively with the speculation transformation. As the figure shows, the
speculation transformation adds instrumentation before each mem-
ory store (s.f = i and p.f = j) that backs up the old value of the
memory location in a new, dedicated local variable (i’ and j'). The
transformation also adds code at the beginning of the region to back
up any local variables that are live into the region and are written by
the region; in the figure, the region backs up q into a new local vari-
able q'. The speculation transformation generates an “undo block”
that restores the original values of stored-to memory locations and
local variables. The transformation adds conditional jumps, shown
as dotted lines in the figure, from each lock acquire to the appro-
priate point in the undo block. A lock acquire jumps to the undo
block only if the acquire operation involves transferring ownership
from another thread or threads, since that process permits any other
thread to transfer ownership of another object’s lock that the region
may already have acquired.

EnfoRSer-D’s run-time costs. EnfoRSer-D transforms regions
to perform fine-grained locking at the object level. This approach
avoids contention and achieves high scalability because locks only
conflict when regions perform conflicting accesses to objects. How-
ever, EnfoRSer-D’s approach has two main drawbacks that lead to
high run-time overhead. First, EnfoRSer-D adds instrumentation
costs to every program memory access (except for accesses that
are statically redundant in a region or statically data race free; Sec-
tion 4.1). Although biased reader—writer locks provide low over-
head for the common case—non-conflicting lock acquires—this
overhead is still significant when incurred at nearly every mem-
ory access [12]. Second, EnfoRSer-D’s atomicity transformations
(the idempotent and speculation transformations) add additional
run-time costs in order to support retrying regions [31].

These two main run-time costs of EnfoRSer-D can be seen in
Figure 2. First, each memory load and store is preceded by a lock
acquire operation. Second, EnfoRSer-D has transformed the region
to execute speculatively: the region backs up stored-to memory
locations and locals, and it adds an undo block. Although by design
the undo block executes infrequently, the conditional control flow
edges add additional complexity that limits optimizations within
the region. Furthermore, the additional local variables used to back
up values are live into the undo block, which adds register pressure.

The rest of this paper explores an alternative to EnfoRSer-D’s
transformation that acquires a single lock for the entire region,
avoiding both instrumentation at every memory access and trans-
formations that ensure atomicity. However, acquiring a lock on the
whole region—which involves acquiring the same lock for every
pair of regions that potentially race with each other—adds high
contention in many cases. The challenge is to apply these region
locks judiciously.

3. Hybridizing Static and Dynamic Locks

This section describes the design of EnfoRSer-H, a version of En-
foRSer that enforces SBRS through a combination of per-object dy-
namic locks and per-region static locks. The high-level intuition of
EnfoRSer-H is that using static locks to enforce SBRS incurs less
instrumentation overhead than using dynamic locks (see the previ-
ous section for details of the overheads introduced by EnfoRSer-D),
but using dynamic locks means that regions are less likely to con-
flict. Hence, EnfoRSer-H adopts a hybrid scheme that uses static
locks to provide atomicity where we expect few conflicts (reduc-

ing the likelihood of expensive contention), while using dynamic
locks when regions often execute concurrently (where static locks
would result in significant contention). The following sections de-
scribe: (a) how SBRS can be enforced using per-site static locks,
and how static locks be coarsened to the granularity of regions to
reduce overhead; (b) how SBRS can be enforced using a combina-
tion of static and dynamic locks; and (c) a policy for selecting the
right combination of static and dynamic locks.

3.1 EnfoRSer-S: Enforcing SBRS with Static Locks

We first present a version of EnfoRSer that enforces SBRS with
static locks only, called EnfoRSer-S. EnfoRSer-S operates as fol-
lows: first, it instantiates a global set of static locks, L, for the pro-
gram. Next, it associates each access site (hereafter called “site”
for brevity) in a region with one of those static locks; the set of
static locks acquired in a region r is L(r). Because L(r) is stat-
ically known, EnfoRSer-S can acquire all of the locks in the set
at the beginning of the region, in some canonical order. Like in
EnfoRSer-D, a region does not allow locks to be released in the
middle of the region.

This strategy provides two-phase locking while avoiding the
possibility of deadlock (because of the canonical ordering of static
locks), without the need for complex atomicity transformations, as
in EnfoRSer-D. However, this strategy alone does not suffice to
guarantee atomicity. Consider two regions r; and r2, with a site
s1 in rq that reads an object o, while a site s2 in r2 writes to
that same object. To enforce SBRS, EnfoRSer-S must ensure that
r1 and 72 cannot execute simultaneously. Note that EnfoRSer-D
inherently provides this guarantee, due to its dynamic, per-object
locking: because both s; and s2 access o, they will both attempt to
acquire a lock on o, triggering a conflict that EnfoRSer-D arbitrates.
EnfoRSer-S, on the other hand, uses static, per-site locks; we must
ensure that the locks that EnfoRSer-S acquires in 7; and r2 prevent
the regions from executing simultaneously.

We note that a pair of sites (s1, s2) presents a problem for en-
forcing SBRS only if three conditions are met: (i) both sites might
access the same object; (ii) at least one of those accesses writes to
the object; and (iii) the regions containing s; and s2 could execute
simultaneously in the original program. If any of those three con-
ditions are not met, then executing r1 and r2 simultaneously does
not violate atomicity. In other words, the problem arises if and only
if s1 and s2 race. Hence, EnfoRSer-S can guarantee SBRS by en-
suring that all pairs of sites that could race with each other use the
same static lock. In other words, for any two regions r, and r; that
contain sites s, and s; that race, EnfoRSer-S can guarantee SBRS
by ensuring that L(rq) N L(ry) # 0.

Hence, EnfoRSer-S uses the following strategy for static lock
assignment when choosing which lock to associate with each site.
It begins by using a sound static race detector to determine which
sites might race with each other. EnfoRSer-S uses this information
to construct an equivalence relation, RACE, over the set of sites in
the program where s; RACE s» if and only if:

1. s1 races with s2 according to the race detector (which is a
symmetric property); or

2. 51 = Ss2;0r
3. 3s3.51 RACE s3 A so RACE s3

Note that s, RACE s, does not imply that s, and s, race with
each other according to the static race detection analysis. RACE is
an equivalence relation that adds reflexivity and transitivity to the
symmetric property “(potentially) races with.”



Then, for each equivalence class in RACFE, EnfoRSer-S assigns
a single static lock.> Hence, for each site s, EnfoRSer-S assigns
it some lock [, which is associated with s’s equivalence class in
RACE, and every site s’ that races with s has been assigned [ as
well. When this lock assignment algorithm is used with the locking
strategy outlined above, EnfoRSer-S enforces SBRS using only
static locks while avoiding deadlock.

Coarsening static locks. As described so far, the locking strategy
for EnfoRSer-S requires that a lock be acquired for every site in
a region. Acquiring a lock for every site in a region—including
those that do not execute due to control flow—is likely to add
overhead similar to EnfoRSer-D’s, which also acquires a lock for
every memory access. To mitigate this overhead, we observe that
locks can be coarsened: while each equivalence class in RACE
must use a single lock to ensure correctness, there is no reason that
different equivalence classes must be assigned different locks.
EnfoRSer-S thus uses a simple, region-based strategy for lock
coarsening: in the pursuit of low overhead, it uses a single static
lock for each region. In other words, all sites in a given region
are assigned the same lock. To formalize this, let us define the
SRSL relation as an equivalence relation where s1 SRSL sz if
and only if s; and so are in the same region.* SRSL U RACE
is also an equivalence relation, and EnfoRSer-S ensures that each
equivalence class in this combined relation uses the same lock.
Hence, each region r acquires a single lock when it begins, and
any region r’ that races with r (i.e., contains a site that races with a
site in r) will acquire the same, single static lock when it begins.

3.2 EnfoRSer-H: Enforcing SBRS with Static and Dynamic
Locks

While enforcing SBRS with EnfoRSer-S is sound, we note that it
can be overly conservative in deciding whether to prevent two re-
gions from executing simultaneously, and hence over-serialize exe-
cution. If two regions contain sites that may race with each other ac-
cording to the static race detector, EnfoRSer-S will introduce locks
that prevent those regions from executing concurrently. However,
this locking is subject to three sources of imprecision:

1. Because of control flow in regions, locks may be acquired that
prevent two regions from executing simultaneously even though
during that particular execution of the regions, one or both of
the racing sites may not actually execute.

2. Static race detectors identify sites that may race. At run time,
these races may not occur because either (a) the inherent im-
precision of static analysis means that these sites never race, or
(b) even though under some circumstances the sites race, in this
particular execution the two sites access different objects and so
no race occurs.

3. Because EnfoRSer-S assigns locks according to the RACE re-
lation (more precisely, according to the RACE U SRSL rela-
tion), two sites may use the same lock because they each race
with a third site, even though these two sites can never race with
each other.

Note that these sources of imprecision are not equally problem-
atic: acquiring static locks when those locks are unlikely to re-
sult in conflicts does not cause much contention, while acquiring

3 Note that some sites may not appear in RACE at all. These sites do not
require locks, as they cannot lead to an SBRS violation.

4 SRSL is an acronym for “same region (static locks).” It applies only to
sites that use static locks, not dynamic locks. This distinction is irrelevant
for EnfoRSer-S, which only uses static locks, but is relevant for EnfoRSer-
H (Section 3.2).

static locks that introduce unnecessary conflicts, results in over-
serialization. Note, too, that none of these sources of imprecision
afflict EnfoRSer-D: its per-object locks always acquire exactly the
locks necessary to prevent two conflicting regions from executing
simultaneously.

We thus introduce EnfoRSer-H, a hybrid version of EnfoRSer
that uses both static locks at the region level and dynamic locks at
the memory access level. For each equivalence class in RACE U
SRSL, EnfoRSer-H uses either static or dynamic locks, depend-
ing on the tradeoff between instrumentation overhead (which fa-
vors static locks) and likelihood of conflict (which favors dynamic
locks).

We note that the SRSL (“same region (static locks)”) relation
applies only to accesses that use static locks. If two sites s; and
so are in the same region, s1 SRSL sz only if both s; and s2 use
static locks. SRSL is thus defined in part according to EnfoRSer-
H’s choice of static versus dynamic locks for each site.

EnfoRSer-H proceeds directly from the definition of EnfoRSer-
S. EnfoRSer-S uses a single, static lock to protect each equivalence
class of RACE U SRSL. EnfoRSer-H allows some of those equiv-
alence classes to be protected using EnfoRSer-D’s dynamic, per-
object locks instead. In other words, each site in the region is either
protected by a static lock (which is acquired at the beginning of the
region, a la EnfoRSer-S) or by a dynamic lock (which is acquired
on demand, right before the access, a la EnfoRSer-D). As long as
all the sites ina RACEUSRSL equivalence class use the same fype
of lock (static or dynamic), atomicity of regions is still ensured.

Note that, if any site in a region uses dynamic locks, the site
must be transformed using one of EnfoRSer-D’s atomicity trans-
formations to support restart. For regions that have a mix of static
and dynamic locks, the static locks are acquired before the trans-
formed region executes.

3.3 Choosing Which Locks to Use

Section 3.2 described how EnfoRSer-H can operate with different
sites using different types of locks to enforce atomicity and hence
provide SBRS. An obvious question to ask is how to determine
which sites should use which type of lock. Static locks should
be used when excessive serialization is unlikely—when sites do
not often conflict. Dynamic locks, on the other hand, should be
used when the benefit of determining more precisely when regions
conflict makes up for higher instrumentation overheads. Because
these are run-time properties, EnfoRSer-H uses profiling to collect
information about the behavior of regions in the program. This
profiling information is then used by a lock assignment algorithm
that determines which type of lock should protect each site. This
section describes that process.

Profiling data. Run-time profiling collects three pieces of data:

1. for each site s, the execution frequency of the region containing
S
2. for each site s, the number of conflicting lock acquires that oc-

cur when using a static lock, based on the RACE equivalence
class, in order to protect s’s region; and

3. amapping from sites to the region(s) that contain them statically
(sites may appear in multiple regions statically, e.g., because of
code expansion optimizations such as inlining).

The first two pieces of data are execution frequencies computed
by compiler-inserted instrumentation. The third is computed by the
just-in-time compiler.

In order to collect this data, each method is first compiled so
that each site in a region is guarded by a static lock associated with
its RACE equivalence class—which is equivalent to EnfoRSer-S



Algorithm 1 EnfoRSer-H’s lock assignment algorithm.

1: buildSRSLRelation()

2: initialCost < estimateCost()
3: for Site s in RACE do

4: sType < s.getLockType()

5 if sType is static lock type then
6: s.setLock Type(DynamicLock Type)
# Change the lock type to per-object type
7: markAllISitesInRaceEqvClassAsDynamicLockType(s)
8: buildSRSLRelation()
9: currentCost <— estimateCost()
10: if currentCost < initialCost then
11: initial Cost < currentCost
12: else
13: s.setLockType(StaticLock Type)
14: resetAllSitesInRaceEqvClassAsStaticLock Type(s)
15: buildSRSLRelation()
16: end if
17: end if
18: end for

without considering the SRSL relation. The compiler inserts instru-
mentation at each static lock acquire to count execution frequency
and the frequency of conflicting acquires. The compiler updates the
mapping from sites to regions as it compiles each region.

Assigning locks. Under EnfoRSer-H, some sites are guarded by
static locks while other sites use dynamic locks. The number of
possible configurations for a hybrid implementation is 2%, where
N is the number of equivalence classes in the RACE equivalence
relation. Each equivalence class can be independently set to use
static locks or dynamic locks, but all of the sites in an equivalence
class must use the same type of lock for correctness. Note that
in practice, there are fewer than 2% possible configurations: for
a given configuration, the use of the SRSL relation to perform
lock coarsening means that equivalence classes in RA CF that have
sites that appear in the same region must use the same type of
lock; assigning one RACE class to use static locks may ultimately
require that several other RACE classes also use static locks.

EnfoRSer-H uses a greedy algorithm, as shown in Algorithm 1,
to determine which RACE classes should use static locks and
which should use dynamic locks. The algorithm begins by assum-
ing that all regions use static locks. Based on this assumption, it
computes the associated SRSL relation. Starting with this assign-
ment, the algorithm computes an estimated cost according to a
function estimateCost. This estimated cost is a function of the ex-
pected number of executed lock acquires and conflicting lock ac-
quires. This section describes estimateCost in more detail below.

Given a lock configuration and an estimated instrumentation
cost, the algorithm proceeds greedily. It iterates through each
RACE equivalence class, switching all of the class’s sites to use
dynamic locks (if they have not already been assigned dynamic
locks). The algorithm propagates the effects of this switch by re-
calculating the SRSL relation (since sites using dynamic locks are
not included in SRSL). The algorithm then computes the cost of
this new configuration. If the cost is less than the previous config-
uration, then the algorithm continues on to the next iteration with
the new configuration, i.e., with the sites in the current RACE
equivalence class using dynamic locks. Otherwise, the algorithm
continues with the previous configuration, i.e., with the sites in the
current RACFE equivalence class using static locks.

While this greedy algorithm may not find the optimal (i.e., low-
est estimated cost) configuration, our experience is that it is effec-
tive in finding better configurations when they exist. For example,
our evaluation shows that in cases where profiling indicates that
static locks incur many conflicts, the algorithm correctly chooses

an assignment that instruments the program with mostly dynamic
locks.

Estimating execution cost. At a high level, EnfoRSer-H predicts
the costs that an execution will incur from acquiring locks, given
profiling data and a candidate assignment of locks to be static or
dynamic.

The basic intuition behind the estimate are two sources of over-
head when enforcing SBRS using EnfoRSer-H:

1. The fast-path cost. This is the cost of acquiring the necessary
locks to execute a region, assuming conflict freedom. For a
region r, its estimated fast-path cost is:

Crp(r) = locks(r) x Tjy

where Ty, is the fast-path cost factor, and locks(r) is estimated
as follows.

If the region r is protected by a static lock, one static lock
acquire executes for the entire region. The function estimates
this frequency as the maximum frequency of all sites in the
region:
locks(r) = max(freq(s))
seEr

where freq(s) is number of times that a lock executed for site s
according to profiling.

If the region is protected by dynamic locks, the fast-path cost is
estimated by summing the frequencies of all sites in the region:

locks(r) = Z(fTCQ(S))

ser

although it is an overestimate because it does not account for
control flow.

2. The conflict cost. This is the cost of a conflict when a lock’s
ownership must be transferred to a new thread (Section 2.2).
For a region r, its estimated conflict cost is:

Creonsi(r) = conflicts(r) X Teonsi

where Teongi is the conflict cost factor, and conflicts(r) is
estimated as follows.

If the region r is protected by a static lock, our experience
suggests that merging locks using the SRSL relation leads to a
higher conflict rate than for the maximum conflicts of all sites in
the region, so we instead compute the sum of all sites’ conflicts
in the region:

conflicts(r) = Z(conﬂicts(s))

sEr

where conflicts(s) is the number of conflicting lock acquires for
s according to profiling.

If r is protected by a dynamic lock, the algorithm cannot
estimate the number of conflicts for dynamic locks because
EnfoRSer-H collects profiling information using static locks
based on RACE. Since dynamic locks tend to conflict infre-
quently compared to static locks, we assume no conflicts for
dynamic locks:

conflicts(r) =0

Summing up all these costs across all regions provides an estimate
of the instrumentation cost for a given lock assignment. Section 3.4
discusses the impact of the two cost factors, T}, and Teonfi.

Overview of EnfoRSer-H’s optimization pipeline. Figure 3 illus-
trates EnfoRSer-H’s optimization process. Each method is initially
compiled so that each of its regions uses static locks based solely
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Figure 3. EnfoRSer-H’s optimization pipeline.

on the RACE relation, as well as counters for collecting profile
information. The second compilation uses the results of the assign-
ment algorithm to use the chosen combination of static and dy-
namic locks.

3.4 Improving the Cost Estimate

This section describes a few extensions to the estimateCost function
that help to improve its accuracy.

Conservative conflict prediction. We note that EnfoRSer-H’s
profiling counts a site’s conflicts using static locks merged accord-
ing to the RACE equivalence class, but EnfoRSer-H chooses static
locks so that all sites in the RACE U SRSL equivalence class will
use the same static lock. As a result, any two sites in this equiv-
alence class that did not conflict with each other during profiling,
may now conflict with each other with the coarsened locks.

To provide a better prediction of this effect, the estimateCost
function computes the number of predicted conflicts for a site by
taking the maximum number of conflicts measured for any site in
the same RACE U SRSL equivalence class:

computedConflicts(s) = max profiledConflicts(s)
sce

where e is the RACE U SRSL equivalence class for s.

Considering redundant lock acquires in the model. EnfoRSer-
D and EnfoRSer-H use an optimization that removes redundant
dynamic locks: if an earlier access in a region guarantees that the
appropriate lock will already be held for a given access, the lock
acquire for the latter access can be elided [31]. The cost model
accounts for this effect by internally performing this redundant lock
elimination optimization when computing the estimated fast-path
cost for a region.

Ratio of costs of a conflict and a fast path. The two parameters in
the cost model that drive the instrumentation overhead estimates are
the cost of a fast path, T},, and the cost of a conflict on statically-
locked regions, T¢onp. The ratio of these two parameters captures
how biased the assignment algorithm is toward static versus dy-
namic locks: static locks incur conflicts, and are selected against if
Teonst 1s high, while dynamic locks require more fast paths, and are
selected against if T}, is high. Adjusting the ratio between these
parameters leads to different lock assignment outcomes. In our ex-
periments, we have found that EnfoRSer-H’s performance is quite
stable across a wide range for the ratio of Tonpn to Ty, (50-300),
suggesting that it is most important to identify a key set of outlier
regions when performing lock assignment.

4. Evaluation

This section first describes our implementation and experimental
methodology. It then compares the run-time characteristics and
performance of EnfoRSer-D, EnfoRSer-S, and EnfoRSer-H.

4.1 Implementation

We have implemented the EnfoRSer configurations in Jikes RVM
3.1.3 [5, 6], a Java virtual machine that provides performance
competitive with commercial JVMs [7]. Our implementation builds
on the publicly available implementation of our prior work, which
provides only the EnfoRSer-D algorithm [31]. We have now made
our implementations of EnfoRSer-D, EnfoRSer-S, and EnfoRSer-
H publicly available on the Jikes RVM Research Archive.®

Jikes RVM uses two just-in-time compilers at run time. The first
time a method executes, Jikes RVM compiles it with the baseline
compiler, which generates unoptimized machine code directly from
Java bytecode. When a method becomes hot, Jikes RVM compiles
it with the optimizing compiler at successively higher optimization
levels. As in our prior work, we modify only the optimizing com-
piler to enforce SBRS, since EnfoRSer’s transformations require a
compiler internal representation [31]. While this approach is tech-
nically unsound, it approximates the performance of a fully sound
implementation because, by design, execution spends most of its
time in optimized code.

As in our prior work, the compiler limits reordering across
region boundaries (synchronization operations, method calls, and
loop back edges) in order to preserve SBRS. After letting the com-
piler perform some standard optimizations, the optimizing com-
piler performs EnfoRSer transformations, followed by additional
standard optimizations, which help to “clean up” the code gener-
ated by EnfoRSer’s transformations [31].

4.2 Methodology

Profiling and recompilation. EnfoRSer-S and EnfoRSer-H re-
quire profile information. Both EnfoRSer-S and EnfoRSer-H re-
quire information from the optimizing compiler about the SRSL
relation, i.e., which sites are compiled into which regions. Although
in theory SRSL could be computed statically, in practice inlining
decisions and other optimizations expand regions and increase sites
which appear in the same statically bounded regions. In addition,
EnfoRSer-H relies on run-time profiling to compute the number of
lock acquires and conflicts when using static locks. Both EnfoRSer-
S and EnfoRSer-H initially choose static locks based only on the
RACEF relation, which enables collecting run-time profile infor-
mation about conflicts within each RACE equivalence class.

In theory, an implementation could perform online profiling,
updating SRSL and adjusting the locking strategy for sites on the
fly. This approach would require recompiling all methods affected
by the use of new locks and new locking strategies. While such
an approach is possible, we have not undertaken this engineering
effort. Instead, our implementation runs two iterations of each
program. The first iteration collects profile information: it executes

Shttp://www.jikesrvm.org

®http://www.jikesrvm.org/Resources/ResearchArchive/



EnfoRSer-D EnfoRSer-S EnfoRSer-H
Total Total Static locks Dynamic locks Total
Executed Confl. Executed Confl. Executed Confl. Executed Confl. Executed Confl.
hsqldb6 47x105  59x10° | 2.1x10°5  5.2x10° | 23x107 3.8x10° | 44x10% 56x10° | 4.7x10° 5.7x10°
lusearch6 | 1.5x10° 3.9x10% | 3.8x10% 3.3x10% | 4.1x107 3.7x10% | 1.4x10° 3.6x10% | 1.4x10° 4.0x10°
xalan6 6.1x10°  14x107 | 2.3x10°  1.5x10° | 2.0x108  1.7x10% | 6.1x10° 1.5x107 | 6.3x10° 1.5x10”
avrora9 40%x10°  4.0x10° | 1.1x10° 7.9x10% | 3.8x10% 1.0x10' | 3.9x10° 4.0x10° | 43x10° 4.0x10°
luindex9 | 1.3x10®  7.1x10' | 6.8x107 1.8x10' | 6.0x107 3.0x10° | 6.5x10° 3.3x10' | 6.6x107 3.6x10!
lusearch9 | 1.5x10° 1.2x10* | 47x10% 44x10% | 1.0x10% 3.1x10% | 1.4x10° 9.7x10% | 1.5x10° 4.0x10°
sunflow9 | 7.2x10°  1.6x10* | 3.3x10° 6.0x107 | 2.1x10° 3.2x10% | 2.3x10° 1.2x10* | 44x10° 1.2x10*
xalan9 42%x10°  2.0x107 | 1.3x10°  6.2x10% | 1.2x10%  3.4x10* | 4.1x10° 2.0x107 | 42x10° 2.0x107
pjbb2000 | 1.2x10° 9.5x10° | 6.2x10%  2.6x10% | 1.2x10%  1.4x10% | 1.1x10° 9.5x10° | 1.2x10° 9.5x10°
pjbb2005 | 6.3x10° 4.0x10% | 1.8x10° 1.0x10° | 1.1x10° 25x10% | 44x10° 42x10% | 55x10° 4.2x108

Table 1. Dynamic lock acquire operations executed, and the number of them that result in a conflicting lock state transition requiring
coordination among threads. For EnfoRSer-H, the table shows the breakdown for static and dynamic locks.

code compiled entirely with static locks based only on the RACE
equivalence class. Note that the SRSL equivalence classes are not
known during the first iteration, so the first iteration cannot use code
compiled based on SRSL.

After the first iteration completes, Jikes RVM recompiles all
methods that have been compiled by the optimizing compiler;
when the optimizing compiler recompiles a method during this
phase, it uses the profile information from the first iteration. For
the EnfoRSer-S configuration, the compiler uses the SRSL relation
in order to compute static region locks based on RACE U SRSL.
EnfoRSer-H runs the assignment algorithm, which uses run-time
profile information about static locks in order to decide whether to
use static or dynamic locks for each site. For sites that use static
locks, EnfoRSer-H uses the RACFE U SRSL relation in order to use
one lock for each region while preserving correctness. EnfoRSer-
D ignores the profiling information and uses dynamic per-object
locks, and is thus equivalent to our prior work [31].

The second iteration then executes using the recompiled meth-
ods. Our evaluation reports the cost of the second iteration only.

This two-iteration methodology thus represents an optimistic
performance measurement: it excludes compilation time and the
cost of the assignment algorithm, and it uses profile information
on a prior identical run. On the other hand, this methodology does
not account for the fact that EnfoRSer-S and EnfoRSer-H have the
potential to reduce compilation time (and thus execution time, since
JIT compilation can affect program execution time) by avoiding
EnfoRSer-D’s complex atomicity transformations.

Static race detection. EnfoRSer-S and EnfoRSer-H rely on con-
servative static data race detection in order to compute the RACFE
relation. We use Naik et al.’s whole-program static data race detec-
tor, implemented as the publicly available tool Chord.” We disable
Chord’s lockset analysis, which is unsound (has false negatives) be-
cause it uses may-alias analysis [28].% The resulting analysis iden-
tifies accesses as data race free (DRF) based on static thread es-
cape analysis and fork—join analysis [28]. We use Chord’s built-in
mechanism to handle reflection, which resolves reflective calls by
running the input program prior to the static analysis.

In prior work, we used the same configuration of Chord in order
to identify definitely DRF accesses, which can forgo EnfoRSer-
D locks [31]. For a fair comparison, our evaluation continues to
perform this optimization for EnfoRSer-D.

"http://pag.gatech.edu/chord

8 We have confirmed with Naik that the sound version of Chord’s analysis,
which uses conditional must-not alias analysis, is not available [27].

Benchmarks. We evaluate the EnfoRSer implementations using
benchmarked versions of large, real-world multithreaded appli-
cations: the DaCapo benchmarks [8] versions 2006-10-MR2 and
9.12-bach (2009), distinguished with names suffixed with ‘6’ and
‘9’, using the large workload size; and fixed-workload versions of
SPECjbb2000 and SPECjbb2005.° We exclude benchmarks that
unmodified Jikes RVM cannot execute. In addition, we exclude
eclipse6 since Chord fails when analyzing it. We exclude jython9
and pmd9 since Chord does not report any potential data races
in these programs; we suspect that jython9, which has limited
multithreaded behavior, in fact has no data races, while Chord
does not understand pmd9’s multithreading based on futures. We
cross-checked Chord’s results with a dynamic race detector’s out-
put [11, 17]; we found one class (in jbb2005) that Chord does not
analyze at all (for unknown reasons), so EnfoRSer-S, EnfoRSer-D
and EnfoRSer-H fully instrument this class.

Platform. The experiments execute a high-performance config-
uration of Jikes RVM with the default high-performance garbage
collector (FastAdaptiveGenlmmix). The experiments execute on an
Intel Xeon E5-4620 system with four 8-core processors (32 cores
total) running Linux 2.6.32.

4.3 Run-Time Characteristics

Table 1 reports how many lock acquires execute, and how many of
them incur a conflicting transition, for each EnfoRSer configura-
tion. Each result is the mean of five trials of a statistics-gathering
configuration of EnfoRSer-D, EnfoRSer-S, or EnfoRSer-H. For
each configuration, the first column under 7oral reports the total
number of lock acquire operations executed, and the second col-
umn reports how many of those operations result in a conflicting
lock state transition, requiring coordination among threads.

As expected, EnfoRSer-S acquires a single lock per region,
rather than per memory access, so it performs fewer lock acquires
than EnfoRSer-D. However, EnfoRSer-S incurs many more con-
flicts than EnfoRSer-D, except for two programs (hsqldb6 and luin-
dex9). EnfoRSer-S incurs many more conflicts than EnfoRSer-D
because of the imprecision of detecting conflicts wtih static locks,
for reasons described in Section 3.2.

For luindex9 and sunflow9, EnfoRSer-H achieves its desired
goal, reducing lock acquires by 39-49% relative to EnfoRSer-D,
without substantially affecting the fraction of conflicts, which is al-
ready very low. As Section 4.4 shows, EnfoRSer-H is able to lower
run-time overhead relative to EnfoRSer-D for these programs.

Yhttp://wuw.spec.org/jbb200{0,6}, http://users.cecs.anu.
edu.au/~steveb/research/research-infrastructure/pjbb2005
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Figure 4. Run-time overhead of providing SBRS with EnfoRSer configurations that use dynamic locks, static locks, or a hybrid of both.

For other programs, EnfoRSer-H does not substantially af-
fect how many lock acquire operations execute compared with
EnfoRSer-D. At the same time, EnfoRSer-H does not signifi-
cantly increase total lock acquires nor conflicting lock acquires.
EnfoRSer-H does increase the total number of lock acquires
slightly for xalan6 and avrora9 compared with EnfoRSer-D; this
possibly unintuitive result is a side effect of the fact that EnfoRSer-
H’s static lock acquires execute at the beginning of a region
(i.e., they are not sensitive to control flow in the region), while
EnfoRSer-D’s dynamic lock acquires execute only when their cor-
responding access executes.

‘We note that for pjbb2005, EnfoRSer-H reduces lock acquire op-
erations compared with EnfoRSer-D. However, EnfoRSer-H also
incurs more conflicts than EnfoRSer-D; the rate of conflicts is high
for pjbb2005, so even a modest increase can incur high overhead,
which may explain why our performance evaluation shows no sta-
tistically significant difference in overhead between the two config-
urations for pjbb2005 (Section 4.4).

4.4 Performance

Figure 4 shows the overhead of EnfoRSer-D, EnfoRSer-S, and
EnfoRSer-H over baseline execution. Each bar is the mean of at
least 10 trials; each bar has a 95% confidence interval centered at
the mean.'® As in Section 4.3, for each configuration including the
baseline (unmodified Jikes RVM), Jikes RVM executes two itera-
tions. The first iteration always uses static locks based solely on the
RACE relation. Before the second iteration, the optimizing com-
piler recompiles methods according to the EnfoRSer configuration:
EnfoRSer-S and EnfoRSer-H compute RACEUSRSL equivalence
classes, and EnfoRSer-H uses the assignment algorithm to choose
a combination of static and dynamic locks. In the baseline configu-
ration, the optimizing compiler recompiles all methods without any
instrumentation.

For most programs, EnfoRSer-S incurs substantially higher
overhead than EnfoRSer-D, which is a result of EnfoRSer-S caus-
ing many more conflicting lock acquires than EnfoRSer-D (Ta-
ble 1). EnfoRSer-S incurs an average overhead of 2600% overhead
(a 27X slowdown) over baseline execution. This result shows that
static locks must be applied judiciously in order to be effective.

19For some programs with high execution time variance, we have run
additional trials in an effort to reduce confidence interval sizes.

EnfoRSer-S outperforms or matches EnfoRSer-D’s perfor-
mance for hsqldb6 and luindex9, which is to be expected from the
low number of conflicts it occurs in Table 1.

Overall, EnfoRSer-H is able to improve the performance of
enforcing SBRS compared with EnfoRSer-D, but the average
improvement is modest: from 27% to 26%, a 4% reduction in
overhead. This result is unsurprising given the results from Ta-
ble 1: the reduction is modest overall, and significant benefits from
EnfoRSer-H are limited to a few programs.

For two programs, luindex9 and sunflow9, EnfoRSer-H reduces
overhead substantially compared with EnfoRSer-D, 63% and 87%
reduction in overhead, respectively, over the baseline. Note that
for luindex9, EnfoRSer-S also incurs low overhead compared to
EnfoRSer-D since it reduces lock acquires without increasing the
number of conflicting acquires, as this program inherently has
few conflicts. This result follows directly from Table 1, which
shows that EnfoRSer-H performs about half as many lock acquire
operations as EnfoRSer-D for each of these programs.

For all other programs, EnfoRSer-H does not perform signifi-
cantly worse than EnfoRSer-D. (EnfoRSer-H appears to perform
slightly worse for xalan6, lusearch9, and xalan9, but the confidence
intervals overlap.) This outcome results from EnfoRSer-H’s as-
signment algorithm finding relatively few executing regions that
can use static region locks without incurring significant contention
(as Table 1 suggests), so it conservatively uses dynamic per-object
locks in most cases, and thus EnfoRSer-H’s performance resembles
EnfoRSer-D’s performance in these cases.

These results show the opportunities for and limitations of hy-
bridizing locks to enforce SBRS efficiently. While static locks re-
duce the number of executed lock acquires compared with dy-
namic locks, their conservatism introduces many false conflicts.
EnfoRSer-H judiciously uses static locks only where profiling and
the cost model predict few enough conflicts to not outweigh the re-
duction in lock acquires, achieving better performance than either
EnfoRSer-D or EnfoRSer-S can achieve alone. While the overall
performance improvement is modest, EnfoRSer-H generally does
not hurt performance relative to EnfoRSer-D or EnfoRSer-S, and it
has the potential to improve performance significantly in cases that
can benefit from a hybrid of static and dynamic locks.



5. Related Work

This section covers related work other than memory models and
our prior work on EnfoRSer (called EnfoRSer-D in this paper),
which Section 2 covered.

Static locking. To provide deterministic replay for racy programs,
Chimera records an execution by recording not only its synchro-
nization operations but also the ordering between accesses involved
in data races [22]. Chimera uses the same static lock for each pair
of accesses that potentially race with each other, according to con-
servative static analysis, similar to EnfoRSer-S’s selection of static
locks based on the RACE relation. Using static locks slows pro-
grams by more than an order of magnitude. To reduce the over-
head of acquiring a lock at each potentially racy access, Chimera
coarsens lock granularity in cases where profiling predicts that two
regions using the same lock will contend infrequently. While lock
coarsening is similar in spirit to EnfoRSer-S and EnfoRSer-H’s
use of the SRSL relation to acquire a single lock for each region,
Chimera’s coarsening can potentially lead to high contention be-
cause its regions are in general neither statically nor dynamically
bounded. Chimera relies on symbolic execution in order to asso-
ciate address ranges with coarsened locks to minimize false con-
flicts. This approach is mostly beneficial to avoid repeated false
conflicts inside loops. EnfoRSer-H avoids such optimizations since
loop back edges are natural boundaries of statically bounded re-
gions.

Aside from the fact that Chimera focuses on recording cross-
thread dependencies, whereas our work enforces atomicity, the
two approaches differ in two important ways. First, Chimera uses
only static locks associated with static code locations (sites or re-
gions); it makes no use of what we call “dynamic locks”: locks
associated with shared memory (objects). Although Chimera can
achieve reasonable performance using static locks, our results show
that EnfoRSer-S experiences very high contention with static locks
alone, suggesting that Chimera’s evaluated programs have signifi-
cantly less contention than our evaluated programs. Second, since
Chimera uses only static locks, it does not investigate hybridizing
static and dynamic locks, which is the main contribution of our
work.

Utilizing static analysis. Much prior work has used static analysis
to identify definitely data-race-free (DRF) or thread-local accesses,
in order to reduce instrumentation costs [15, 16, 22, 31, 34]. Be-
yond distinguishing definitely DRF and potentially racy accesses,
both this work and Chimera utilize information about potentially
racy pairs of accesses in order to select a static lock to guard both
accesses [22].

Prior work has used static analysis to identify accesses where
instrumentation would be “redundant” due to preceding instrumen-
tation for the same object [12, 18]. Our prior EnfoRSer work also
identifies and eliminates instrumentation that would be redundant
due to earlier instrumentation in the same region, using intraproce-
dural dataflow analysis [31]. In this paper, the compiler makes use
of redundancy analysis for dynamic per-object locks.

Hybridizing locking mechanisms. This work targets a major
source of overhead of enforcing SBRS: the overhead incurred by
EnfoRSer-D to perform a lock acquire operation at every poten-
tially racy memory access. An orthogonal cost is the performance
penalty incurred by biased reader—writer locks for conflicting lock
acquires [12, 31]. In other work, we have targeted this separate
problem; that work chooses between biased and unbiased reader—
writer locks based on run-time profile information [14]. EnfoRSer-
S and EnfoRSer-H could make use of that complementary approach
in order to use a combination of biased and unbiased reader—writer
locks for both dynamic and static locks.

Other prior work has combined synchronization mechanisms
adaptively. For example, Usui et al. combine lock-based mutual
exclusion and software transactional memory (STM) [33]. Abadi et
al. present an STM that adaptively changes how it detects conflicts
for non-transactional accesses, depending on whether transactions
access the same objects as non-transactional code [1].

Region serializability. Researchers have either enforced atomic-
ity of code regions [4, 29] or checked violations of atomicity of
code regions [23, 24, 26]. Prior work explores checking viola-
tions of serializability of full or bounded synchronization-free re-
gions (SFRs) but requires custom hardware [23, 26]. Enforcing full
SFR serializability in software is possible using replication, but it
adds prohibitive overhead without additional cores [29]. Atom-Aid
and BulkCompiler eliminate atomicity violations and/or provide
sequential consistency by executing chunks of instructions atom-
ically, but rely on hardware extensions [4, 24].

6. Conclusion

Statically bounded region serializability (SBRS) is a memory
model that provides measurably stronger guarantees than the Java
memory model. But prior work’s EnfoRSer-D approach requires
acquiring a lock at every memory access, which adds significant
run-time overhead even for regions that are not generally involved
in conflicts. This paper introduces EnfoRSer-H, which judiciously
chooses a combination of static locks that provide lower instru-
mentation overhead but more conflicts than EnfoRSer-D’s dy-
namic locks. While EnfoRSer-H’s average performance benefit
over EnfoRSer-D is small, EnfoRSer-H provides significant im-
provement in cases that it can benefit, without negatively impacting
applications, demonstrating the potential for hybrid synchroniza-
tion to provide strong end-to-end memory models for the Java
platform.
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