
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Efficient Context Sensitivity for Dynamic Analyses via
Calling Context Uptrees and Customized Memory Management ∗

Jipeng Huang Michael D. Bond
Ohio State University

{huangjip,mikebond}@cse.ohio-state.edu

Abstract
State-of-the-art dynamic bug detectors such as data race and
memory leak detectors report program locations that are
likely causes of bugs. However, programmers need more
than static program locations to understand the behavior
of increasingly complex and concurrent software. Dynamic
calling context provides additional information, but it is
expensive to record calling context frequently, e.g., at ev-
ery read and write. Context-sensitive dynamic analyses can
build and maintain a calling context tree (CCT) to track call-
ing context—but in order to reuse existing nodes, CCT-based
approaches require an expensive lookup.

This paper introduces a new approach for context sensi-
tivity that avoids this expensive lookup. The approach uses
a new data structure called the calling context uptree (CCU)
that adds low overhead by avoiding the lookup and instead
allocating a new node for each context. A key contribution is
that the approach can mitigate the costs of allocating many
nodes by extending tracing garbage collection (GC): GC col-
lects unused CCU nodes naturally and efficiently, and we
extend GC to merge duplicate nodes lazily.

We implement our CCU-based approach in a high-perfor-
mance Java virtual machine and integrate it with a staleness-
based memory leak detector and happens-before data race
detector, so they can report context-sensitive program lo-
cations that cause bugs. We show that the CCU-based ap-
proach, in concert with an extended GC, provides a com-
pelling alternative to CCT-based approaches for adding con-
text sensitivity to dynamic analyses.

∗ This material is based upon work supported by the National Science
Foundation under Grants CAREER-1253703 and CSR-1218695.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
OOPSLA ’13, October 29–31, 2013, Indianapolis, Indiana, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2374-1/13/10. . . $15.00.
http://dx.doi.org/10.1145/2509136.2509510

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Compilers, Debuggers, Memory
management, Run-time environments

Keywords calling context; context sensitivity; dynamic
analysis; leak detection; race detection; garbage collection

1. Introduction
To provide more functionality and to scale with hardware
that provides more instead of faster cores, software is be-
coming increasingly complex and concurrent. These trends
make it harder to write correct programs and to reproduce,
find, diagnose, and fix bugs in existing programs.

Dynamic program analysis helps developers make soft-
ware more reliable by identifying errors and their likely
causes. For example, data race detectors track the program
locations that last accessed each variable [14, 21, 22, 33, 43].
When they detect a data race, they can thus report the two
program locations involved in the data race: the program lo-
cation that last accessed the variable, as well as the current
program location. Other dynamic analyses such as mem-
ory leak detection [15, 18, 38], dynamic slicing [1, 55], and
atomicity violation detection [23, 32] track program loca-
tions in order to report likely bug causes. To find and di-
agnose bugs that do not manifest during testing, dynamic
analyses must run in production settings, where minimizing
overhead is the key constraint.

In order to save time and space, almost all dynamic pro-
gram analyses track static program locations, e.g., a method
and line number. However, static locations are often not
enough to understand what the program was doing at that
point. Static locations are increasingly inadequate as soft-
ware becomes more complex and concurrent. In complex,
object-oriented software with many small, virtual methods,
a static program location is often invoked from many unre-
lated contexts. Modern software consists of integrated com-
ponents written by many developers, which complicates this
guessing game. In concurrent programs, a bug’s cause and
manifestation might execute on different threads, increasing
the challenge of determining program behavior from a static
location.

[* = org.eclipse]

*.ui.internal.NavigationHistory.createEntry():527

*.ui.internal.NavigationHistory.addEntry():307

*.ui.internal.NavigationHistory.access$9():291

*.ui.internal.NavigationHistory$2.run():160

... 13 call sites omitted ...

*.compare.internal.CompareUIPlugin.compareResultOK():474

*.compare.internal.CompareUIPlugin.openCompareEditor():427

*.compare.CompareUI.openCompareEditorOnPage():138

*.compare.internal.CompareAction.run():36

*.compare.internal.BaseCompareAction.run():26

leakdiff.Harness$1.run():89

... 23 call sites omitted ...

*.core.launcher.Main.main():948

Figure 1. A calling context from a leak in the Eclipse IDE.

Context sensitivity. By looking only at static sites, devel-
opers may not know what (or how or why) their programs
are doing. They need more information than a static pro-
gram location to understand what the program was doing.
They need to know the dynamic calling context: the list of
active call sites, similar to an exception stack trace.1

Developers are already accustomed to getting a stack
trace upon failure or when a bug is detected, to help them
understand what the program was doing when it failed. Ob-
taining the stack trace at these points is straightforward: the
runtime system simply walks the current thread’s call stack.
Overhead is not a concern because walking the stack occurs
only once.

To understand bugs, developers not only need to know the
calling context of program failures—they need to know the
calling context of bug causes. For example, developers need
to know the calling context of the first of two accesses in-
volved in a data race, and they need to know the calling con-
text of a site that is leaking memory. Reporting these prior
program locations’ calling contexts is challenging. Since it is
impossible to predict which accesses’ calling contexts might
need to be reported later, dynamic analysis must record call-
ing context frequently, e.g., at every program read and write.

The Java benchmark SPECjbb2000 has a site (static pro-
gram location) that some leak detectors will pinpoint as a
probable leak cause. However, this site can be invoked from
34 statically possible callers. Similarly, the Eclipse IDE has
a memory leak that occurs in Eclipse’s NavigationHistory
class, but the calling context is needed in order to determine
that the call stack includes a class CompareUIPlugin that in-
dicates that the leak is called by comparing two code trees.
Figure 1 shows (an abridged version of) this calling context;
Section 6 has more details.

Prior approaches. While most analyses record and report
only static program locations, some prior work captures call-
ing context but either has serious limitations or adds high
space and time overheads, limiting its applicability. Walk-

1 Prior work on static analysis considers other forms of context sensitivity
that includes object allocation sites and types [34, 45].

ing the stack whenever context is needed is expensive unless
it is rare [16, 24, 37, 44, 50]. Recent approaches reconstruct
calling context when needed from limited information that is
cheap to collect, but these techniques are often probabilistic;
their accuracy does not scale well with program complexity;
they are unsuitable for bug detection analyses; and/or they
cannot handle virtual method dispatch and dynamic class
loading [13, 28, 35, 48]. Notably, precise calling context en-
coding (PCCE) [48] provides efficient calling context encod-
ing and profiling but cannot handle bug detection analyses,
virtual method dispatch, or dynamic class loading.

Dynamic analysis can build and maintain each thread’s
current position in a calling context tree (CCT), in which
each node represents a distinct calling context [3, 42, 46, 56].
Each CCT node maintains a mapping from child sites to
child (i.e., callee) contexts. This mapping can be imple-
mented in various ways, such as a hash table since the map-
ping is sparse, or as a list if the number of child sites is
relatively small. Dynamic analysis thus frequently performs
a nontrivial lookup to find the corresponding child con-
text node, if any, which slows programs by two or more
times [3, 42, 46].

Contributions. This paper proposes a novel approach for
maintaining the calling context at run time and adding con-
text sensitivity to dynamic analyses efficiently. Whereas a
CCT-based approach looks up and reuses existing calling
context nodes, our approach always allocates a new node.
Making this approach efficient requires two main contribu-
tions. First, we introduce a new data structure called the call-
ing context uptree (CCU) that supports allocating new nodes,
instead of reusing existing nodes, efficiently. Second, we ex-
tend tracing garbage collection (GC) to support efficient col-
lection of unused nodes and lazy merging of duplicate nodes
(nodes representing the same context). This approach avoids
relying on static analysis of the call graph, and it naturally
supports dynamic class loading and virtual method dispatch.

We implement our CCU-based approach in a high-perfor-
mance research JVM and integrate it into two dynamic bug
detection analyses—a staleness-based memory leak detector
and a happens-before race detector—that track objects’ “last
access” sites to report likely bug causes. We show that our
approach provides dynamic context sensitivity to the leak
detector by adding 28 or 67% average overhead (relative to
baseline program execution), depending on how leaf sites
are stored, and to the race detector by adding 37% overhead.
We show that our approach outperforms a comparable CCT-
based implementation. These results suggest that the CCU-
based approach offers a compelling new direction for adding
efficient context sensitivity to dynamic analyses. While our
CCU-based approach outperforms the CCT-based approach,
we believe the larger takeaway is the counterintuitive result
that the CCU-based approach can provide context sensitivity
efficiently, demonstrating a promising direction for future
work to improve performance further.

2. Background
Dynamic analyses such as memory leak and data race de-
tectors keep track of program locations that allocated or
last accessed program variables. This paper refers to such
analyses as client analyses. A client analysis instruments
program locations that we call client sites. Which sites are
client sites depends on the client analysis. For example, in
a typical data race detector, all program loads and stores to
potentially shared memory are client sites. A client analy-
sis records client sites in per-variable client metadata. This
metadata might be implemented by adding extra word(s) to
object headers or by adding shadow memory [36]. A client
analysis that records only client sites is context insensitive,
while a client analysis that records client sites with their call-
ing context is context sensitive.

In this paper, dynamic calling context is (1) a client site
plus (2) the set of active call sites. A (call or client) site
consists of a method and a bytecode index:2

class Site {
Method method;
int bytecodeIndex;
}

In Figure 1, the first site, NavigationHistory.createEntry():
527, is the client site, and the other sites are call sites.

It is challenging to add efficient context sensitivity to dy-
namic analyses. Dynamic analyses such as bug detectors
typically execute client sites frequently (e.g., they record a
site for every program memory access), so that if and when
they detect a bug related to a memory location, they can
report an associated site. A naı̈ve analysis that frequently
records calling context—which can be dozens of call sites
long—will add high time and space overhead. Another chal-
lenge is handling two common language features: dynamic
class loading, which grows the static call graph as the pro-
gram executes, and virtual method dispatch, which compli-
cates instrumenting calls.

2.1 The Calling Context Tree
Ammons et al. introduce the calling context tree (CCT), in
which each node represents a distinct calling context exe-
cuted by the program [3, 42, 46, 56]. Each node points to its
existing child nodes:

class CCTNode {
Site site ;
Map<Site,CCTNode> childMap;
}

As mentioned earlier, the site can be a call site or a client
site. Each node maintains a map childMap from child sites to
child nodes; a child node represents a child (callee) calling
context of the current node, and a child site is the site of

2 Sites use bytecode indices because they uniquely identify bytecodes, un-
like line numbers. Throughout the paper, we show line numbers for calling
contexts because they are more intuitive when examining source code.

a child node. The child map enables dynamic analysis to
reuse an existing context node, if any, at a call or client
site. Reusing existing nodes is important because programs
execute many more dynamic than distinct contexts [16].

Inherent to this design is that each node has pointers
pointing “down” to it child nodes, in order to reuse existing
nodes. Direct mapping is impractical because a call site may
have many statically possible child sites: a call site may stat-
ically call several virtual methods, and each of these meth-
ods may contain many call and client sites. Furthermore, the
number of statically possible child sites grows over time due
to dynamic class loading. Efficient implementations must
use a sparse mapping implementation such as a hash table,
or potentially a list if relatively few distinct child sites ex-
ecute. Existing CCT-based dynamic analyses thus require a
nontrivial lookup at essentially every call and/or client site,
slowing programs by two or more times [3, 42, 46].

Figure 2 shows an example program written in Java-like
pseudocode. Suppose the client analysis wants to record
the last access (load or store) to each object. The call site
main():16 has four statically possible child sites: A.m():4,
A.m():5, B.m():10, and B.m():11. Note that the child sites
are, by definition, the call sites and client sites inside the
possible callees (A.m() and B.m()). Similarly, call site
B.m():11 has two statically possible child sites, A.m():4
and A.m():5. We assume line 18 (...) performs additional
work.

Figure 3 shows the CCT that a CCT-based dynamic anal-
ysis would allocate for the example program in Figure 2.
Ovals represent CCT nodes; shaded nodes are client site
nodes, while other nodes are call site nodes. Squares repre-
sent heap objects that are instances of class A, B, or X (x1–
x3 are instances of X numbered by allocation order). Down
edges point from CCT nodes to their children, and up edges
point from per-object client metadata (e.g., object headers)
to CCT nodes; the client metadata records the last access to
each object. The edge from A.m():5 to “...” represents extra
CCT nodes created by globalSet.add(). The significance of
this call is that x1 and x3 escape and are thus still alive at
line 18.

The program accesses x1 and x3 first at B.m():10 ←
main():16 and then at A.m():4 ← B.m():11 ← main():16.
Nonetheless, the context B.m():10 ← main():16 remains
in the CCT. Similarly, x2 dies quickly (indicated with
dashed lines) because A.m():5 does not add x2 to globalSet;
nonetheless, the last-access context A.m():4 ← main():16
survives because it is reachable from the tree root. This pa-
per refers to nodes that are no longer used by client analyses
as irrelevant nodes. Our new CCU-based approach relies
on most context nodes becoming irrelevant (unreachable)
fairly quickly so that tracing-based garbage collection (GC)
can collect them. The CCT can also support GC of irrelevant

1 class X { boolean flag; } // defaults to false
2 class A {
3 m(X x) {
4 if (x.flag) { /∗ client site ∗/
5 globalSet .add(x) ; /∗ call site ∗/
6 }
7 } }
8 class B extends A {
9 m(X x) {

10 x.flag = true; /∗ client site ∗/
11 super.m(x) ; /∗ call site ∗/
12 } }
13 main() {
14 A a = new A(); B b = new B();
15 for(A tmp : {b, a, b}) {
16 tmp.m(new X()); /∗ call site ∗/
17 }
18 . . .
19 }

Figure 2. Example program written in Java pseudocode. Client
sites are loads and stores. Each client or call site is annotated.

Figure 3. Calling context tree (CCT) corresponding to Figure 2.
Ovals represent CCT nodes; shaded nodes are client site nodes, and
others are call site nodes. Squares represent program objects.

nodes using weak references [26], e.g., by using a weak hash
map for child nodes and also maintaining parent pointers.3

The more critical problem with the CCT is that nodes can
have many statically possible child contexts, which can grow
over time, so finding a child context in the child map requires
a relatively expensive indirect lookup at each program call.
Our approach addresses this problem, as well as how to
delete irrelevant nodes.

3 Client analyses that profile all contexts will not have irrelevant nodes. The
CCT (without weak child references) is well suited for such analyses, while
our CCU-based approach, which relies on irrelevant nodes, is not.

2.2 Alternatives to CCT-Based Approaches
Recent work encodes the calling context as a value or values.
Some techniques trade accuracy for performance, but their
accuracy does not scale well with program complexity [13,
28, 35]. In contrast, precise calling context encoding (PCCE)
losslessly encodes each calling context as an integer value
or values [48]. While PCCE provides efficient encoding and
profiling of contexts, it is not well suited to bug detection
analyses, which need to encode program locations as per-
variable metadata, since PCCE represents contexts with a
variable number of integers. Furthermore, PCCE relies on
numbering a statically known call graph and instrumenting
call edges with statically unique targets, so it inherently
cannot handle dynamic class loading nor virtual method
dispatch, limiting its applicability. Section 7 discusses these
techniques in more detail.

3. A New Approach for Dynamic Context
Sensitivity

This section introduces an approach based on a new data
structure called the calling context uptree (CCU). Each node
points “up” to its parent instead of “down” to its children:

class CCUNode {
Site site ;
CCUNode parent;
}

Because CCU nodes do not point to their children, a node’s
callee context nodes are not accessible from it, making it
essentially impossible to reuse existing nodes to represent
reoccurring contexts. However, allocating new nodes is fast.

This section presents an approach for dynamic context
sensitivity that uses the CCU and extends garbage collection
(GC). We first describe how dynamic analysis constructs
CCU nodes, and then how to extend GC to collect irrelevant
nodes and merge duplicate nodes.

3.1 Constructing the CCU
A CCU-based analysis must allocate, at a minimum, CCU
nodes to represent the context of every client site (e.g., ev-
ery read and write). An analysis can construct CCU nodes
eagerly or lazily. Eager construction allocates a node at ev-
ery call site and passes the node as an extra, implicit call
parameter. In the example below, caller and callee are names
of methods that each take an additional parameter:

caller (..., ccuNode) {
...

// program call site
callee (..., new CCUNode(callSite, ccuNode));
...

}

At every client site, eager construction allocates a new
node from the client site and parent node, and uses it in an

analysis-specific way such as storing the node in an accessed
object’s header (o.metadata):

o.metadata = new CCUNode(clientSite, ccuNode);
read o. f ; // client site

In contrast, lazy construction allocates CCU nodes only at
client sites:

o.metadata = new CCUNode(clientSite, getNode());
read o. f ; // client site

The internal, implementation-specific function getNode()
walks the stack and allocates CCU nodes recursively until it
finds a stack frame for which the CCU node has already been
constructed.4 Section 4.1 describes how our implementation
stores pointers to CCU nodes on stack frames and uses
method return addresses to represent sites efficiently.

Eager and lazy construction are not unique to a CCU-
based approach. A CCT-based approach may also construct
nodes lazily or eagerly [50, 56]. CCU- and CCT-based ap-
proaches will each look up the same number of nodes; the
key difference is that “looking up” a CCU node means allo-
cating a new node, whereas looking up a CCT node means
searching for an existing node to reuse.

We focus on lazy construction because it scales well with
the client analysis: it constructs nodes only for the calling
contexts of client sites, not for all calling contexts.

3.2 Collecting Irrelevant Nodes
Because CCU nodes point only “up” to their parents, trac-
ing GC naturally collects irrelevant nodes (nodes that are
transitively unreachable and thus are no longer used by the
client analysis). In fact, the CCU relies on GC to collect
the plethora of nodes that become irrelevant quickly. Tracing
GC is well suited to collecting CCU nodes because tracing is
proportional to the live nodes, not the (more numerous) dead
nodes [30].

Example CCU. Figure 5 shows the CCU after executing
the (instrumented) code in Figure 2. The contexts B.m():10
→ main():16 and A.m():4→ main():16 are irrelevant since
x1 and x3’s last access changed, and x2 died. We represent
these nodes with dashed lines to show that GC collects them
automatically once they become unreachable.

3.3 Merging Duplicate Nodes
While GC naturally collects irrelevant CCU nodes, duplicate
nodes (nodes representing the same calling context) can still
add significant space overhead in a CCU-based approach.
In contrast, the CCT disallows duplicate nodes by always
reusing existing nodes. As our results show, the CCT’s ap-
proach essentially wastes time reusing nodes because many
duplicate nodes become irrelevant quickly.

4 We note that the CCU and CCT both naturally handle recursive call sites
because each CCU node represents one dynamic call site or client site.

Figure 4. Calling context tree (CCT) corresponding to Figure 2.
(Exact copy of Figure 3, for comparison purposes.)

Figure 5. Calling context uptree (CCU) corresponding to Figure 2,
without merging of duplicate nodes. The dashed lines represent
objects that become irrelevant (unreachable) by line 18 of the
example program. Other formatting is same as in Figure 3.

Figure 6. Calling context uptree (CCU) corresponding to Fig-
ure 2, after merging of duplicate nodes. Irrelevant nodes have also
been garbage collected. Down arrows (dashed) represent child map
pointers; after merging, all surviving nodes have child maps. Other
formatting is same as in Figure 3.

To balance space and time, our CCU-based approach pe-
riodically merges duplicate nodes so that each relevant con-
text is represented by just one merged node. The goal of
merging is to determine, for each node, its merged node—
which may be the node itself or a different node—and redi-
rect all incoming pointers to the merged node.

Our merging algorithm piggybacks on tracing GC, which
already traverses all objects. Merging is not suitable for non-
tracing GC such as reference counting, although efficient
reference-counting algorithms still trace young objects [11],
providing an opportunity for merging duplicate nodes.

Looking up merged nodes. To merge duplicate nodes, our
implementation needs to support looking up existing merged
nodes based on node equality. Two nodes are equal if their
sites are the same and their parent nodes are equal (or both
null). We add to each merged node a map from its child sites
to existing child nodes:

class MergedCCUNode extends CCUNode {
Map<Site,CCUNode> childMap;
}

A merged node needs a child map to enable looking up the
the unique (merged) node for each child node. Section 4.3
explains how our implementation uses different memory
spaces for unmerged and merged nodes, in order to support
adding the childMap field only for merged nodes.

Both the CCU and CCT maintain child maps, but the CCT
maintains a child map for every node; a merged CCU node is
essentially the same as a CCT node that has a parent pointer.
The CCU avoids the cost of updating the child map for the
(many) irrelevant nodes that become unreachable between
their allocation and the next GC, as supported by our results.

GC typically traces (i.e., marks live and possibly moves)
an object o before tracing objects referenced by o [25]. This
tracing order is not well suited to merging, which needs to
determine a node’s merged node based on the node’s merged
parent. We modify GC tracing to trace each CCU node’s
parent before tracing the node itself.

Figure 7 presents pseudocode that extends GC tracing to
merge duplicate nodes by identifying a node’s merged node
and redirecting the node’s incoming pointers to the merged
node. GC calls traceAndMerge, instead of its regular tracing
function traceObject, when tracing CCU nodes. traceAnd-
Merge first recursively traces and merges the parent node,
which returns the merged parent node. It then checks for an
existing merged node for node. If no merged node exists,
node is the merged node, so traceAndMerge performs reg-
ular GC tracing on it (marking it live and copying it if ap-
plicable) and adds it to the parent’s child map as the merged
child. Section 4.3 describes how this algorithm applies to
CCU nodes in both copying and non-moving spaces.

Example CCU after merging. Figure 6 shows the CCU
from Figure 5 after merging executes as part of GC, which

1 // Transitive closure :
2 while (! workList . isEmpty()) { // initialized w/root objs
3 ObjectReference obj = workList.pop();
4 for (Address slot : getReferenceSlots (obj)) {
5 slot . store (traceObject(slot . loadObjectReference())) ;
6 }
7 }
8 ObjectReference traceObject(ObjectReference obj) {
9 if (isCCUNode(obj)) {

10 return traceAndMerge(obj);
11 }
12 if (! alreadyTraced(obj)) {
13 // first trace this node
14 obj = markLiveAndPossiblyCopy(obj);
15 // trace outgoing pointers later
16 workList .push(obj) ;
17 }
18 return obj ;
19 }
20 CCUNode traceAndMerge(CCUNode node) {
21 // first trace and merge the parent
22 if (! alreadyTraced(node.parent)) {
23 node.parent = traceAndMerge(node.parent);
24 }
25 // then trace and merge this node
26 mergedNode = node.parent.childMap.get(node.site);
27 if (mergedNode == null) {
28 node = markLiveAndPossiblyCopy(node);
29 // now node is the merged node
30 node.parent.childMap.put(node. site , node);
31 return node;
32 }
33 return mergedNode;
34 }

Figure 7. Pseudocode showing how we modify GC tracing to
trace and merge CCU nodes. The transitive closure traces each
heap object. Normally, an object is traced before its referenced ob-
jects (traceObject). A CCU node is traced after tracing its par-
ent (traceAndMerge). Fine-grained synchronization (not shown)
ensures atomicity of lines 26–30. Nodes without parents are not
merged (not shown).

also collects irrelevant nodes. Each relevant context is repre-
sented by one merged node.

4. Challenges for an Efficient Implementation
The main challenge in implementing a CCU-based approach
for dynamic context sensitivity is that it allocates many
nodes. Node allocation takes time, increases cache pres-
sure, and increases GC frequency and workload. Walking the
stack to support lazy construction also adds time overhead—
for both the CCU and the CCT. This section describes how
our implementation addresses these challenges: optimiza-
tions for constructing CCU nodes, merging duplicate nodes,
and integrating with two bug detection clients.

We implement our CCU-based approach in Jikes RVM
3.1.1, a high-performance research Java virtual machine
(JVM) [2] that provides performance competitive with com-
mercial JVMs.5 Our implementation is publicly available on
the Jikes RVM Research Archive.6

The CCU-based approach and optimizations could be im-
plemented in many existing managed language VMs that
have the requisite features: tracing GC and support for intro-
spection of both the stack and dynamically compiled method
metadata. One could potentially even adapt the approach to
a language such as C or C++ that uses explicit memory man-
agement, e.g., by providing specialized GC and merging of
CCU nodes, and keeping track of pointers from ordinary
heap objects to CCU nodes, since these pointers would be
the roots of the transitive closure of CCU nodes.

4.1 Optimizing CCU Nodes
Although CCU nodes and sites can be represented as objects
as described in Section 3, objects have headers that would
bloat the code and add overhead to node construction. This
section describes how we try to make CCU nodes and sites
as lightweight as possible.

Using return addresses as sites. Each CCU node has two
fields: its site and parent node. One option for represent-
ing the site is to assign each static site (method and byte-
code index) a unique identifier. When compiling each call
site and client site, the dynamic compiler would compute
the identifier and insert instrumentation to construct a CCU
node using the identifier. However, this option would not
work well with lazy node construction (Section 3.1) because
callee methods are responsible for constructing nodes for
caller call sites. For example, when call site B.m():11 in Fig-
ure 2 calls method A.m(), instrumentation in A.m() needs to
construct the node for the call site B.m():11. Instrumenta-
tion at B.m():11 could potentially pass the site identifier to
A.m(), but this would add overhead, sacrificing much of the
benefit of lazy construction.

Our implementation addresses this challenge by repre-
senting sites using the return address of the caller call site.
The return address of the caller call site is already available
on the current stack frame (for use by a return instruction). A
return address maps to a specific caller call site, and the VM
already provides methods to decode an instruction pointer to
a caller call site, e.g., to support exception handling.

Decoding return addresses is slow compared to allocating
nodes—but decoding occurs only when reporting call sites
to programmers, which is already expensive and infrequent.
To enable the VM to always decode a return address to
its unique site, we modify the VM to prevent collection of
unused compiled methods and their metadata.7

5 http://dacapo.anu.edu.au/regression/perf/9.12-bach.html
6 http://www.jikesrvm.org/Research+Archive
7 We find that disabling collection of unused methods does not noticeably
degrade performance (results not shown).

The VM recompiles methods adaptively [5] and compiles
some static sites multiple times by inlining methods and
unrolling loops, so multiple return addresses may map to the
same call site. Our implementation computes node equality
using a node’s return address, which may inhibit merging
somewhat since two nodes with the same site and parent
cannot be merged if their sites are represented by different
return addresses.

Raw node objects. Our implementation supports CCU
nodes being pure Java objects. Java objects have a header
for type information, locking, and garbage collection (GC);
the header in Jikes RVM is two words by default. Since dy-
namic analyses allocate CCU nodes frequently, the cost of
the header is significant in terms of cache footprint, space
overhead, and header initialization time.

Our implementation thus also supports using “raw” mem-
ory for CCU nodes without headers. We have implemented
custom memory spaces that support raw CCU nodes: a copy-
ing space and a mark-sweep space. When GC traces nodes in
these spaces, it calls our custom tracing code. The evaluation
uses raw nodes since they offer better performance.

4.2 Optimizing CCU Instrumentation
This section describes how the implementation avoids walk-
ing the stack and reuses nodes whenever possible.

Optimizing lazy construction. Whenever our implementa-
tion constructs a CCU node representing a method’s caller
context (i.e., the calling context not including the current
call or client site), it stores a pointer to the node in a slot
in the method’s stack frame. This behavior enables reusing
CCU nodes constructed for existing stack frames and en-
ables walking the stack until a stack frame is found that has
already constructed its caller context node.

We modify the optimizing compiler to introduce a new
local variable in each method that holds the method’s caller
context node, to avoid looking on the current stack frame in
the common case. This local variable starts as null; instru-
mentation initializes it at the method’s first client site. The
method getNode() constructs nodes lazily by walking the
stack until it finds an already-constructed node.

Client sites in loops execute multiple times with the same
calling context. We modify the compiler to perform a spe-
cialized form of loop-invariant code motion that moves the
construction of client sites before the loop pre-header and
lets each dynamic client site use the same node. The com-
piler only performs this optimization if the loop pre-header
executes less frequently than the client site in the loop (based
on existing edge profiling). Since this optimization applies
only to client sites, not call sites, it benefits only the leak de-
tection experiments that use client site nodes (Section 5.3).

The following pseudocode shows how the local variable
and hoisting optimizations work:

foo() {
CCUNode callerNode = null; // foo’s caller context
...
// Hoisted instrumentation :
if (callerNode == null) {

callerNode = getNode();
}
CCUNode csNode =
new CCUNode(clientSite, callerNode);

...
for (...) {

o.metadata = csNode;
read o. f ; // client site
...
}
}

Inlined call sites. To reduce call overhead and increase
optimization scope, the VM inlines small methods and hot
call sites. An inlined call site represents multiple call sites.
Our implementation constructs just one CCU node for each
non-inlined call site in an inlined method. Return addresses
naturally represent inlined call sites, and the VM provides
functionality to decode the call sites that make up a return
address for an inlined call site.

4.3 Merging Duplicate Nodes
Section 3.3 described an algorithm for merging duplicate
nodes, a key optimization because our approach allocates
many duplicate nodes, some of which remain reachable.
Our implementation supports two types of merging. In-place
merging merges nodes in a (non-moving) mark-sweep space.
Because nodes cannot be moved, all nodes in the space
must include the childMap field in case they become merged
nodes.

Copy-based merging copies merged nodes into a mark-
sweep space, which naturally contains only merged nodes.
Copy-based merging has two advantages. First, nodes in
the copy space, which are numerous and often duplicates,
do not need the extra childMap field. Second, copy-based
merging limits fragmentation better than in-place merging,
since copy-based merging copies only merged nodes into the
fragmentation-prone mark-sweep space.

Regardless of the type of merging, our implementation
always uses a configuration with one copy node space and
one mark-sweep node space. It allocates nodes into the
copy space, which is fast since it uses bump-pointer allo-
cation [8]. GC copies surviving nodes to the mark-sweep
space, which offers better space and time performance for
long-lived nodes. The mark-sweep space is always a mature
space, i.e., it is traced only during full-heap GCs. The copy
space may be a mature space or nursery space, i.e., traced
only during nursery GCs.

We have found that if the copy node space is a nurs-
ery space, then our implementation adds high overhead due
to generational write barriers, which track new pointers

from mature to nursery objects in order to support high-
performance generational GC [10, 53]. For our leak and
race detectors, any assignment of a CCU node into an object
header requires a generational write barrier, and this barrier
needs to record the pointer in a remembered set if the node is
old [10, 53]. Thus, all of our experiments use a mature copy
space that is collected only during full-heap GCs.

Implementing the child map. Merged nodes have an extra
field childMap that maps child sites to child nodes. In our
implementation, the child map is a hash-based map that uses
an array of “buckets”; each bucket is a linked list of nodes.
To construct a lightweight linked list, each merged node has
an extra field next that points to the next node in the list.

Our implementation piggybacks on parallel GC to per-
form merging when nodes are copied from the copy node
space to the mark-sweep node space. Searching for a child
node does not require synchronization, except for a load
fence to ensure a happens-before edge from insertions. How-
ever, if a node is not found, it must be inserted in the appro-
priate bucket’s list, which requires synchronization to ensure
atomicity with respect to another thread adding the same or
a different node to the same bucket. The implementation first
uses atomic operations to “lock” the bucket to ensure exclu-
sive access. Then it searches the bucket’s list again to make
sure the node is not already in the list. Finally it inserts the
node and unlocks the bucket.

Child nodes should be allowed to die if they are not
referenced transitively by client metadata via node parent
pointers. Otherwise all merged nodes will be transitively
reachable from child maps, so they will not be collected by
GC. The implementation supports treating each child map
reference like a weak reference [26] by tracing the map only
at the end of regular tracing, and removing any nodes from
the map that have not been marked live. We also implement
and evaluate an alternative that retains all merged nodes and
thus avoids tracing merged nodes.

4.4 Integrating with Client Analyses
Memory leak detector. State-of-the-art leak detectors track
the sites that allocated and/or last accessed each memory
location, in order to report the sites associated with leaked
memory to programmers [15, 18, 52]. We have implemented
a leak detector that detects leaks by inferring that stale (not
recently used) objects are likely leaks [15, 18, 41, 52].

We have implemented a staleness-based leak detector that
tracks staleness by instrumenting each load of an object ref-
erence to mark the referenced object as not stale [17]. It
also updates the target object’s last-use site at each refer-
ence load, making it a challenging CCU-based client. The
leak detector supports both context-insensitive and context-
sensitive modes. The context-insensitive detector adds a
word to each object header to store the last-use client site.
The context-sensitive detector supports two options: (1) one
header word for the client site and another word pointing

to a CCU node representing the caller context, or (2) one
header word that points to a CCU node representing the en-
tire context, i.e., including the client site.

Data race detector. Happens-before race detectors detect
data races by identifying two conflicting accesses that are
not ordered by synchronization [14, 19, 22, 33, 39, 49, 54].
A race detector typically tracks the sites that last read and
wrote each field or array element. When the detector detects
a data race, it reports both the prior access(es) stored for the
racy variable, and the current program location. To report the
calling context of the current program location, the runtime
system simply walks the call stack. Reporting the calling
context of the prior access(es) requires recording the context
of each access.

We have integrated CCU with Pacer, a publicly avail-
able sampling-based happens-before race detector imple-
mented in Jikes RVM [14]. Pacer maintains per-field meta-
data in each object’s header. This metadata already stores the
(context-insensitive) sites that last wrote and read each field.
These are the client sites. We modify the implementation to
store the CCU node representing the caller context of each
client site. Given the client site and its caller context, Pacer
can report the full calling context.

At a 100% sampling rate, Pacer is functionally equivalent
to FastTrack [22]. We primarily evaluate FastTrack (Pacer
at 100%), which is a challenging client because it instru-
ments a significant fraction of all reads and writes. Pacer
and FastTrack are able to skip race detection analysis for
accesses that occur within the same epoch (synchronization-
free region) as the prior access. The implementation does not
record the CCU node in such “same epoch” cases.

5. Quantitative Evaluation
This section primarily evaluates the time and space that
CCU- and CCT-based approaches add to two client analyses:
data race and memory leak detectors. It also evaluates a
worst-case client and measures how much the CCU-based
approach relies on GC.

5.1 Methodology
Implementing the CCT. For comparison purposes, we
have also implemented support for CCT-based, context-
sensitive analysis. In the CCT, every node has a child map.
To keep the comparison as close as possible, our CCT nodes
are also “raw” nodes and represent their child maps in the
same way as CCU nodes, and they use the same efficient
lazy construction as CCU nodes. One limitation of our eval-
uation is the possibility that the CCT underperforms its po-
tential because of a suboptimal implementation. We note that
child maps are sparse by design, so most lookups hit on the
first attempt, so unimplemented optimizations, such as using
inline caching and using a map from caller call site to per-
callee arrays indexed by call sites, are unlikely to improve
performance significantly.

Configuring the child map. Both the CCU- and CCT-
based approaches use child maps: each CCT node has a
child map, while only merged CCU nodes have child maps.
GC can treat these child node references like weak refer-
ences [26], reducing space but potentially slowing execution
by tracing more nodes and allocating and/or copying more
nodes; or GC can treat child node references like strong ref-
erences, in which case our implementation safely elides trac-
ing of child nodes.

Our evaluation explores this tradeoff by comparing four
configurations:

• CCU with weak child references: By using weak child
references, GC collects all irrelevant nodes, both un-
merged and merged. For this configuration, we explore
several merging strategies: no merging, in-place merging,
and copy merging. We find that copy merging provides
the best overall performance by eliminating duplicate
nodes and limiting fragmentation.
• CCU with strong child references: In this configuration,

GC collects irrelevant nodes that have not been merged,
but it does not collect irrelevant merged nodes, allowing
GC to avoid tracing merged nodes altogether since their
child and parent references always point to other merged
nodes. This configuration uses copy merging since it pro-
vides the best performance.
• CCT with weak child references: In this configuration,

GC collects all irrelevant nodes since it treats child map
references like weak references. To limit fragmentation,
this configuration uses a multi-space strategy similar to
copy merging—it allocates nodes into a copy space and
copies surviving nodes into a mark-sweep space—except
GC performs no merging, since CCT nodes are merged
at allocation time.
• CCT with strong child references: In this configuration,

strong child references keep all nodes live, and nodes
get merged at allocation time, so GC cannot collect any
nodes. This configuration thus allocates all nodes into an
immortal space.

Benchmarks. In our experiments, Jikes RVM executes
the DaCapo Benchmarks [9] (version 2006-10-MR2) and
a fixed-workload version of SPECjbb2000 called pseudo-
jbb [47]. We evaluate the leak and race detectors on all
benchmarks except bloat because its run-to-run variability is
unusually high (even without our modified JVM), making it
difficult to produce high-confidence results. We execute the
large workloads for all benchmarks, except we execute the
medium workload for hsqldb with the race detector since the
large workload runs out of memory, even without context
sensitivity.

Experimental setup. We build a high-performance config-
uration of Jikes RVM (FastAdaptive) that optimizes the VM
and adaptively optimizes the application as it runs. We run

the race detector with Jikes RVM’s default generational Im-
mix collector [12] (GenImmix), and the leak detector with a
generational mark-sweep collector (GenMS) since its object
model leaves a few bits available for the leak detector to use
to compute staleness.

To account for run-to-run variability due to dynamic opti-
mization guided by timer-based sampling, we execute 15 tri-
als for each measurement and take the median, which min-
imizes effects of machine noise. We also show show 95%
confidence intervals centered at the mean, which typically
differs little from the median. We let the VM choose its own
heap size adaptively because the client analyses, especially
race detection, add high space overhead. For plots of space
overhead versus time, we show just one trial since averaging
such plots is not straightforward and might unrealistically
hide overhead peaks.

Platform. Our experiments execute on a 4-core Intel i5
3.3-GHz system with 4 GB memory running Linux 2.6.32.

5.2 Key Questions
Our evaluation aims to address the following questions:

• Can the CCU-based approach avoid the vast majority
of the expensive lookups performed by a CCT-based ap-
proach? Our results show the vast majority of child map
lookups are eliminated and replaced by allocations of
CCU nodes (e.g., Table 1).
• Is it cheaper to allocate a CCU node than to look up

a CCT node? Our results show that each CCT lookup
is replaced with roughly one CCU allocation (Table 1),
and the CCU-based approach on average provides signif-
icantly better time performance than the CCT-based ap-
proach (Figures 8, 9, 12).
• Can GC and lazy merging of duplicate nodes provide

competitive space overhead for the CCU-based ap-
proach? These features allow duplicate CCU nodes to
be merged and unreachable nodes to be collected, so the
CCU adds space overhead comparable to the CCT (Ta-
ble 2 and Figure 11).
• Can the overall performance of a CCU-based approach

be competitive with or better than a CCT-based ap-
proach? On average and across nearly all experiments,
the CCU-based approach provides significantly better
time performance and similar space performance to the
CCT-based approach (Figures 8, 9, 11, 12 and Table 2).
• How do the context-sensitive sites reported by leak and

race detectors compare to context-insensitive sites? The
context-sensitive sites provide significantly more infor-
mation about dynamic behavior (Section 6).

Next we evaluate the performance of CCU-based approaches
and compare to CCT-based approaches. We always evaluate
using a client analysis because the approaches add zero
overhead without a client, due to lazy construction.

Allocations Hash lookups DCS LVA LVAFCCU CCT CCU CCT
antlr 329.8 3.4 0.2 329.0 86% 96% 14%
chart 387.3 0.4 5.5 380.0 71% 98% 29%
eclipse 4561.0 68.5 8.3 4546.0 88% 98% 11%
fop 42.4 0.2 0.3 41.1 85% 80% 8%
hsqldb 490.8 4.5 17.3 546.0 100% 98% 9%
jython 3551.0 4.1 0.2 3535.6 79% 99% 20%
luindex 1068.3 0.4 0.4 1066.4 84% 99% 19%
lusearch 1331.8 0.8 5.5 1305.0 85% 90% 14%
pmd 1645.1 12.8 6.3 1635.4 90% 99% 9%
xalan 6242.2 24.2 8.6 6198.6 92% 96% 8%
pseudojbb 995.8 0.2 15.7 996.3 92% 99% 8%

Table 1. Nodes allocated and hash lookups performed for the
CCU- and CCT-based approaches (all in millions). The last three
columns report how often client sites benefit from optimizations.

5.3 Memory Leak Detection
This section evaluates the performance of our memory leak
detector that tracks the last-use (i.e., last read) sites of all
objects (Section 4.4). We experiment with two CCU/CCT
configurations. The first stores a pointer to a CCU or CCT
node in each object’s header that represents the last-use
site’s calling context, including a node for its client site. The
second configuration stores a node representing the last-use
site’s calling context not including the client site, and it uses
a second header word for an identifier representing the client
site. We say the first configuration uses client site nodes,
and the second configuration does not. Client site nodes can
potentially reduce space overhead since (1) program location
can be recorded in just one word of client metadata (instead
of two) and (2) multiple client metadata can point to the
same client site node after merging. Client site nodes stress
CCU and CCT performance more, since more nodes are
constructed or looked up.

Run-time characteristics. Table 1 shows run-time statis-
tics for the configuration that uses client site nodes; all num-
bers are in millions. These results use the CCU with weak
child references and CCT with strong child references; we
expect weak versus strong references to have a modest im-
pact on these results. Allocations is the number of nodes al-
located. The CCU-based approach allocates roughly 2–3 or-
ders of magnitude more nodes than the CCT-based approach.
However, the CCU-based approach performs about the same
factor fewer Hash lookups than the CCT-based approach, in-
dicating that the vast majority of CCU nodes become un-
reachable before they can be merged.

The last three columns are for the CCU-based approach
(results for the CCT-based approach are similar). Dynamic
client sites (DCS) is the fraction of nodes allocated for client
sites (rather than call sites). Local variable attempts (LVA) is
the fraction of DCS that use the local variable optimization
from Section 4.2. Values are close to 100% because all
optimized code uses this optimization; some cold methods
are not compiled by the optimizing compiler. Local variable
attempt failure (LVAF) is the fraction of LVA that the local

antlr
chart

eclipse

fop
hsqldb

jython

luindex

lusearch

pmd
xalan

pseudojbb

geomean

0

1

2

3

4

N
o
r
m

a
li

z
e
d

 e
x
e
c
u

ti
o
n

 t
im

e

Base

Leak detection only

Leak det + CCU w/o merging

Leak det + CCU + In-place merging

Leak det + CCU + Copy merging

Leak det + CCU + Strong refs

Leak det + CCT + Weak refs

Leak det + CCT + Strong refs

(a) CCU and CCT configurations allocate client site nodes.

antlr
chart

eclipse

fop
hsqldb

jython

luindex

lusearch

pmd
xalan

pseudojbb

geomean

0

1

2

N
o
r
m

a
li

z
e
d

 e
x
e
c
u

ti
o
n

 t
im

e

Base

Leak detection only

Leak det + CCU w/o merging

Leak det + CCU + In-place merging

Leak det + CCU + Copy merging

Leak det + CCU + Strong refs

Leak det + CCT + Weak refs

Leak det + CCT + Strong refs

(b) CCU and CCT configurations store client sites in object headers.

Figure 8. Normalized execution time for leak detection (a) using client site nodes and (b) with client sites in object headers. The graphs
compare context-insensitive leak detection and CCU- and CCT-based context sensitivity. Bars 3–5 in each group use the CCU (with weak
child references) without merging and with two merging algorithms. Sub-bars are GC time.

node variable is null—often only about 10% of the time,
suggesting that using the local node variable is a worthwhile
optimization.

Time overhead. Figure 8 shows the normalized applica-
tion time of various leak detection configurations. All bars
are normalized to unmodified Jikes RVM (Base). The Leak
detection only configuration records context-insensitive sites
and adds 18% overhead on average to record last-use sites
and track object staleness. The four Leak det + CCU con-
figurations construct CCU nodes to represent the context of
each last-use site. The first three CCU configurations use
weak strong child references and either do not merge du-
plicate nodes, or use copy or in-place merging; the fourth
CCU configuration uses copy merging with strong child ref-
erences.

Figure 8(a) corresponds to the configuration that uses
client site nodes. CCU-based context sensitivity adds 67–
72% overhead over context-insensitive leak detection, de-
pending on the merging configuration and the child refer-
ence type. CCT-based context sensitivity adds substantially

more overhead—123 or 127% depending on the child refer-
ence type—because the cost of looking up or constructing
each node is substantially higher for the CCT than for the
CCU. Figure 8(b) shows overhead for storing the client site
in object headers. CCU-based context sensitivity adds only
28–31% overhead on average over context-insensitive leak
detection, depending on the merging configuration and the
child reference type. Using the CCT instead of the CCU adds
on average 46 or 48% overhead over context-insensitve leak
detection, depending on the child reference type.

For the CCU-based approach, using strong child refer-
ences has no significant impact on performance, with similar
results across all benchmarks (1% less overhead on average
than using weak reference with copy merging). This result is
not surprising since only longer-lived nodes have child ref-
erences, so most child references remain live in any case.
The CCT-based approach benefits more (2–4%, relative to
baseline execution), since the cost of creating new nodes is
greater: allocating a node that is not found on lookup re-
quires repeating the lookup in a small critical section.

In both configurations, across all benchmarks, the CCU-
based approach (with copy merging) performs about the
same as, or significantly better than, the CCT-based ap-
proach. For some programs, such as jython and luindex,
the CCU-based approach drastically outperforms the CCT-
based approach.

Merging has little effect on time overhead, although we
show next that it reduces space overhead significantly. Merg-
ing’s time benefit is modest since (1) merging adds its own
GC overhead and (2) our experiments let the JVM grow the
heap automatically, so the extra memory pressure without
merging does not necessarily lead to more frequent GC.

In both configurations, the CCU-based approach adds
high overhead to hsqldb, with much of it due to GC (sub-
bars are GC time). Unsurprisingly, hsqldb, which we show
allocates significantly more CCU nodes than the other pro-
grams, benefits the most from merging of duplicate nodes.

Figure 8(a)’s results include hoisting of client site node
allocation out of hot loops (Section 4.2). Without this op-
timization, the CCU- and CCT-based approaches’ perfor-
mance degrades by 15% and 66%, respectively (results not
shown). The CCT-based approach is helped more by this op-
timization because its hash lookup at each client site is more
expensive than the CCU-based approach’s node allocation.

The CCU-based approach adds extra GC overhead due
to both (1) increasing the allocation rate, which triggers GC
more frequently, and (2) increasing the GC workload from
transitively reachable CCU nodes. We estimate the contri-
bution of each cause by executing a configuration of CCU-
based leak detection (with client site nodes) without stor-
ing CCU pointers into per-object metadata, which measures
the allocation rate increase but not the workload increase.
We find that the GC overhead of this configuration is 15%,
whereas Figure 8(a) shows the full CCU configuration in-
curs 20% GC overhead (both relative to context-insensitive
leak detection). We conclude that the majority (about three-
quarters) of GC overhead comes from the allocation rate in-
crease, and the rest comes from the GC workload increase.

Space overhead. Table 2 shows the average live memory
added for CCU and CCT nodes by measuring the total mem-
ory consumed by the node space after each full-heap GC
and reporting the average across the execution. Table 2(a)
uses client site nodes, and Table 2(b) does not (i.e., same
as Figures 8(a) and 8(b), respectively). The results indicate
that merging duplicate nodes is sometimes critical to avoid
high space overhead. Copy merging in particular improves
memory overhead significantly. We have determined that
both merging algorithms perform similarly in terms of the
number of merged nodes, but In-place merging has higher
space overhead because it fragments the heap significantly
and adds two words for every node (one for the childMap
and one for the next pointer; Section 4.3), not just merged
nodes.

CCU Weak w/merging: CCU CCT
None In-place Copy Strong Weak Strong

antlr 1,675 1,318 1,241 1,286 1,239 24,347
chart 33,299 16,088 1,222 1,259 1,187 1,594
eclipse 56,324 30,708 3,481 8,441 3,315 283,313
fop 2,048 1,955 1,197 1,210 1,185 1,214
hsqldb 59,796 32,840 1,283 1,287 1,402 10,304
jython 3,499 3,466 2,932 3,090 3,103 48,878
luindex 2,822 1,708 1,602 1,676 1,605 10,972
lusearch 44,644 33,143 1,994 2,044 1,656 6,598
pmd 40,348 12,386 1,662 2,246 1,532 62,239
xalan 62,382 36,924 4,309 26,880 3,803 146,239
pseudojbb 41,091 26,264 2,754 2,775 2,780 980

(a) CCU and CCT configurations allocate client site nodes.

CCU Weak w/merging: CCU CCT
None In-place Copy Strong Weak Strong

antlr 1,355 1,256 1,209 1,198 1,197 4,791
chart 17,520 8,186 1,187 1,191 1,174 665
eclipse 26,336 21,404 2,993 3,245 2,988 59,640
fop 1,637 1,785 1,172 1,172 1,166 288
hsqldb 43,705 25,763 1,248 1,246 1,267 2,055
jython 2,941 3,032 2,723 2,735 2,834 17,142
luindex 1,902 1,653 1,594 1,608 1,604 1,880
lusearch 21,246 16,418 1,505 1,531 1,417 2,534
pmd 15,243 7,815 1,469 1,727 1,425 10,130
xalan 22,341 7,115 3,293 3,740 3,194 32,044
pseudojbb 18,058 11,432 2,644 2,657 2,723 312

(b) CCU and CCT configurations store client sites in object headers.

Table 2. Memory consumed by CCU and CCT nodes, in KB, for
context-sensitive leak detection with (a) client sites stored in nodes
and (b) with client sites stored in object headers. The first three
CCU configurations use weak child references. CCU Strong uses
copy merging but avoids tracing merged nodes. CCT Weak mimics
copy merging by allocating into a copy space and copying to a
mark-sweep space. CCT Strong uses an immortal space.

For the CCU, Strong child references do not add much
space overhead over weak references using copy merging,
since only longer-lived nodes get merged. Weak references
do reduce space overhead in a few cases, e.g., xalan with
client site nodes. Weak references are more important for the
CCT; using strong references leads to high space overhead
in several cases because irrelevant nodes are never collected.
Weak references add more space overhead than strong refer-
ences in a few cases (pseudojbb in both tables; chart and fop
in Table 2(b)) because weak references lead to fragmentation
in the mark-sweep node space.

5.4 Data Race Detection
This section evaluates the overhead of the context-sensitive
race detector that records context-sensitive sites at reads and
writes. The race detector does not allocate client site nodes
and instead uses a separate word per field and array element
for the context-insensitive client site (Section 4.4).

Time overhead. Figure 9 shows the run-time overhead that
race detection adds to programs. Context-insensitive race de-
tection slows programs by about 7.8X on average, which

antlr
chart

eclipse

fop
hsqldb

jython

luindex

lusearch

pmd
xalan

pseudojbb

geomean

0

2

4

6

8

10

12

N
o
r
m

a
li

z
e
d

 e
x
e
c
u

ti
o
n

 t
im

e

Base

Race detection only

Race det + CCU + Copy merging

Race det + CCU + Strong refs

Race det + CCT + Weak refs

Race det + CCT + Strong refs

64.3

66.5

65.4

66.7

64.4

Figure 9. Time overhead of race detection with and without CCU- and CCT-based context sensitivity. Sub-bars are GC time.

0.0 0.2 0.4 0.6 0.8 1.0

Sampling rate

0
2
4
6
8

10

N
o
rm

.
ex

ec
.
ti

m
e

Race detection only

Race det + CCU + Copy merging

(a) eclipse

0.0 0.2 0.4 0.6 0.8 1.0

Sampling rate

0

2

4

6

(b) hsqldb

0.0 0.2 0.4 0.6 0.8 1.0

Sampling rate

0

20

40

60

(c) lusearch

0.0 0.2 0.4 0.6 0.8 1.0

Sampling rate

0

2

4

6

8

10

(d) xalan

0.0 0.2 0.4 0.6 0.8 1.0

Sampling rate

0

2

4

6

(e) pseudojbb

Figure 10. Normalized execution time of race detection, with and without CCU-based context sensitivity, at various sampling rates (0%,
5%, 10%, 25%, 50%, 100%).

matches prior results for the FastTrack and Pacer implemen-
tations [14, 22]. CCU-based context sensitivity with merging
(with weak child references) adds 37% average overhead,
relative to original program execution time, over context-
insensitive race detection, while CCU-based context sensi-
tivity with strong child references adds 40% average over-
head. CCT-based context sensitivity with strong child ref-
erences adds 61% average overhead while CCT-based con-
text sensitivity with weak child references adds 62% average
overhead over context-insensitive race detection. If we con-
sider only the multithreaded benchmarks (eclipse, hsqldb,
lusearch, xalan, and pseudojbb), the CCU-based approach
adds 61% and 60% (weak and strong child references, re-
spectively), while the CCT adds 96% and 79% (weak and
strong child references, respectively). .

We further break down the overhead for the multithreaded
benchmarks into three parts (results not shown): stack walk-
ing adds about 20% overhead (relative to original program
execution); storing CCU nodes into metadata adds about
10%; and allocation and GC of nodes add about 20%.

We evaluate the overhead of the CCU-based race detec-
tor at different sampling rates, in order to detect how well a

CCU-based approach’s overhead scales with the client anal-
ysis. Sampling-based race detection samples a fraction of
reads and writes equal to the sampling rate, so a lower sam-
pling rate should yield a less-demanding client analysis. Fig-
ure 10 shows how the amount of additional overhead added
by the CCU-based approach scales approximately linearly
with the sampling rate. This behavior is what we expect since
our implementation constructs CCU nodes lazily at client
sites (Section 3.1). We also measured (but do not show)
time overhead across sampling rates for the CCT, which also
scales well because it uses lazy construction.

Space overhead. Figure 11 shows the memory used by
CCU and CCT nodes across an execution. We omit CCU
with strong child references since its space overhead is sim-
ilar to CCU with weak child references (e.g., Table 2). Time
is normalized to the length of each execution. Each point
represents the live CCU or CCT memory at the end of a
full-heap GC. Race det + CCU w/o merging, which con-
structs CCU nodes but does not merge duplicate nodes,
clearly shows the need for merging. By merging duplicate
nodes, the space overhead added by the CCU is reduced sub-
stantially. Furthermore, whereas CCU space overhead grows

0.2 0.4 0.6 0.8

Time (fraction of run)

0

50000

100000

150000

N
o
d

e
sp

a
ce

 (
K

B
)

Race det + CCU w/o merging

Race det + CCU + Copy merging

Race det + CCT + Weak refs

Race det + CCT + Strong refs

(a) eclipse

0.2 0.4 0.6 0.8

Time (fraction of run)

0

20000

40000

60000

(b) hsqldb

0.2 0.4 0.6 0.8

Time (fraction of run)

0

5000

10000

15000

20000

25000

(c) lusearch

0.2 0.4 0.6 0.8

Time (fraction of run)

0

50000

100000

(d) xalan

0.2 0.4 0.6 0.8

Time (fraction of run)

0

20000

40000

60000

80000

(e) pseudojbb

Figure 11. Space used by CCU and CCT nodes for context-sensitive race detection, with and without CCU node merging.

over time without merging (which is unsurprising since these
programs’ total live memory also grows over time), merging
keeps CCU space overhead fairly constant over time. The
CCU with copy merging provides space overhead similar to,
or significantly lower than, the CCT with both strong and
weak child references.

5.5 Evaluating a Worst-Case Client
Since our leak detector instruments only reference reads and
our race detector avoids instrumenting reads and writes for
“same epoch” cases (Section 4.4), we evaluate a simple,
plausible worst case for CCU- and CCT-based analyses: in-
strumenting every read and write to record the last-access
site in per-object metadata. To keep the context-insensitive
client simple and its overhead low, this client’s instrumenta-
tion does not perform any synchronization.

Our evaluation excludes lusearch because it crashes for
unknown reasons with context-insensitive instrumentation.
We execute the medium workload for eclipse because the
CCT-based configuration runs out of memory on the large
workload. We experiment with configurations with and with-
out client site nodes, as for the leak detector (Section 5.3).

Figures 12(a) and 12(b) show the normalized application
time with and without client site nodes, respectively. The
Context insensitive configuration records context-insensitive
sites and adds about 8% overhead on average. The CCU
and CCT configurations are the same as the weak reference
configurations from Figure 8.

When the CCU and CCT construct client site nodes (Fig-
ure 12(a)), CCU-based context sensitivity adds 140–145%
overhead, depending on the merging configuration and weak
versus strong child references. CCT-based context sensitiv-
ity adds substantially more overhead—356 and 358% on av-
erage for strong child reference and weak child reference,
respectively—because the cost of looking up or construct-
ing each node is substantially higher for the CCT than for
the CCU. For configurations that store client sites in object
headers (Figure 12(b)), CCU-based context sensitivity adds
49–52% overhead on average to leak detection, depending
on the merging configuration and child reference type. The
CCT-based approach adds 77% overhead on average.

antlr
chart

eclipse

fop
hsqldb

jython

luindex

pmd
xalan6

pseudojbb

geomean

0

1

2

3

4

5
N

o
r
m

a
li

z
e
d

 e
x
e
c
u

ti
o
n

 t
im

e

Base

Context insensitive

CCU w/o merging

CCU + In-place merging

CCU + Copy merging

CCT + Weak refs
5.1 6.2 12.8 9.4

(a) CCU and CCT configurations allocate client site nodes.

antlr
chart

eclipse

fop
hsqldb

jython

luindex

pmd
xalan6

pseudojbb

geomean

0

1

2

3

N
o
r
m

a
li

z
e
d

 e
x
e
c
u

ti
o
n

 t
im

e

(b) CCU and CCT configurations store client sites in object headers.

Figure 12. Normalized execution time for instrumenting all reads
and writes so they store last-access sites. The context-insensitive,
CCU, and CCT configurations correspond to Figures 8(a) and 8(b).

CCU CCU CCT
Weak Strong Immortal Weak Strong

antlr 1,203 1,220 145,575 1,194 4,591
chart 1,176 1,189 258,242 1,174 647
eclipse 2,679 2,690 28,390 2,664 1,305
fop 1,171 1,171 18,484 1,168 272
hsqldb 1,251 1,245 180,469 1,269 3,289
jython 2,670 2,675 293,213 2,726 12,306
luindex 1,595 1,615 527,197 1,604 1,821
lusearch 1,434 1,532 477,792 1,418 2,199
pmd 1,476 1,738 403,116 1,429 9,558
xalan 2,982 3,073 266,059 2,944 10,342
pseudojbb 2,644 2,646 216,943 2,732 327

Table 3. Memory consumed by CCU and CCT nodes, in KB, for
context-sensitive leak detection without client site nodes. CCU Im-
mortal is the immortal CCU-based approach, and the other columns
are the same as Table 2(b); CCU Weak uses copy merging.

5.6 Reliance on Tracing GC
The CCU-based approach avoids the cost of looking up ex-
isting calling context nodes, but it allocates substantially
more nodes than a CCT-based approach that reuses nodes.
This section evaluates how much the CCU-based approach
relies on tracing GC to collect irrelevant nodes—by dis-
abling GC of irrelevant nodes.8

Implementation and methodology. We have implemented
an alternative “immortal” CCU-based approach that allo-
cates CCU nodes into an immortal space that GC does not
trace, saving GC time but using extra heap memory and trig-
gering GC more frequently. This approach is thus related to
our CCT-based approach with strong child references, which
also allocates nodes into an immortal space that GC does not
trace.

The immortal CCU-based approach runs out of memory
for several benchmarks when used with the leak detection
client, especially when using client site nodes, so we use a
configuration without client site nodes. Some programs still
run out of memory with the large workload size; we use the
small size for eclipse and medium size for jython and xalan.

Space overhead. Table 3 shows the live memory used by
CCU and CCT nodes, by measuring the memory consumed
by the node space(s) at each full-heap GC and reporting
the average across the execution. The results are similar to
Table 2(b), except that Table 3 adds the immortal CCU-
based approach. The immortal CCU-based approach uses 1–
2 orders of magnitude more memory than the other CCU-
and CCT-based approaches that use GC, including even the
CCT with strong child references.

Time overhead. We find that the immortal CCU-based ap-
proach actually improves the time performance slightly over

8 We considered implementing a variant that allocates CCU nodes and
does not collect irrelevant nodes, but merges duplicate nodes. However,
this variant and the standard CCT-based approach should perform similarly
since they each merge every allocated node.

the tracing-baed CCU-based approaches: by 2% on average,
relative to baseline execution time (results not shown). This
improvement comes from reducing GC time, since immortal
CCU nodes are not traced or merged.

The results indicate that the CCU-based approach relies on
tracing GC to collect irrelevant nodes—which increase space
overhead drastically if not collected or merged. Although
irrelevant nodes increase memory pressure, GC time does
not increase significantly in our experiments since they allow
the heap size to grow automatically.

5.7 Summary of Quantitative Evaluation
In summary, the CCU-based approach almost always out-
performs the CCT-based approach in terms of time and per-
forms comparably in terms of space. More significantly,
this result demonstrates the potential of the CCU-based
approach—which might seem counterintuitive at first—to
provide dynamic context sensitivity efficiently.

6. Evaluating Context Sensitivity
While this paper mainly evaluates performance, this section
evaluates whether context sensitivity provides useful infor-
mation to bug reports.

Qualitatively Evaluating Context-Sensitive Leaky Sites
We first qualitatively evaluate two real leaks that were re-
produced and evaluated by prior work [15, 31]: one in
SPECjbb2000 [47] and one in Eclipse.9 Our reported leaky
sites do not exactly match those from the prior staleness-
based leak detector that evaluated the same leaks [15] be-
cause our detector updates an object’s staleness and last-use
site when a reference to the object is loaded [17], instead of
when the object itself is modified.

SPECjbb2000 leak. The SPECjbb2000 leak occurs be-
cause the program adds but does not correctly remove fin-
ished orders from an order list. Researchers from IBM and
Intel discovered the leak fix, which involves replacing a
call to spec.jbb.District.removeOldestOrder() with logic to
properly remove finished orders [15]. Our context-sensitive
leak detector reports the following context as a last-use site
for a growing number of stale objects:

<4> spec.jbb.infra.Factory.Container.deallocObject():352

<34> spec.jbb.infra.Factory.Factory.deleteEntity():659

<1> spec.jbb.District.removeOldestOrder():285

<1> spec.jbb.DeliveryTransaction.process():201

<1> spec.jbb.DeliveryHandler.handleDelivery():103

<2> spec.jbb.DeliveryTransaction.queue():363

<1> spec.jbb.TransactionManager.go():449

<1> spec.jbb.JBBmain.run():173

The numbers in brackets (e.g., <34>) indicate the number
of static call sites that can potentially call each method
(based on analyzing the source with the Eclipse IDE). This

9 http://www.eclipse.org

gives a sense of how “nontrivial” the context is, i.e., how
hard it might be for developers to guess the context from
a context-insensitive site. In this case, developers need to
find DeliveryTransaction.process():201, which will likely
require a lot of work because Factory.deleteEntity() has 34
callers. However, in our experiments, the client site actually
consists of the first three call sites due to method inlining by
the optimizing compiler, from which it is relatively easy to
find the buggy site.

Eclipse leak. Eclipse bug #115789 leaks memory when
a “recursive difference” is performed between two source
trees.10 Repeatedly comparing the source tree leads to a
growing leak. Prior work shows that the leak occurs in a
NavigationHistory component that enables navigating back
to prior editor windows, but does not properly release old
state [15]. Our leak detector reports one last-use site in
NavigationHistory, shown in Figure 1.11 This calling con-
text illustrates how comparing source trees in Eclipse ul-
timately leads to stale last-use sites in NavigationHistory.
The elided call sites are other Eclipse internal methods. We
note that the leak fix involves changing NavigationHistory,
so the context-insensitive site is useful by itself. On the
other hand, code tree comparisons cause the leak, so devel-
opers might find the connection between CompareUI.open-
CompareEditorOnPage() and NavigationHistory useful for
understanding the leak. In any case, this example shows that
context-sensitive sites can provide significantly more infor-
mation to developers for highly object-oriented programs.

As in prior work, our implementation reports a few other
last-use sites (for both leaks) for a growing number of stale
objects, but these sites are not directly related to the bug fix,
so we do not evaluate their contexts.

Quantitatively Evaluating Context-Sensitive Racy Sites
To avoid spending substantial time understanding reported
data races, we have only quantitatively (not qualitatively)
evaluated the calling contexts reported by the race detector.
Table 4 shows the number of prior racy accesses reported by
the race detector (reporting a race involves reporting a prior
access and the current access). The first two columns com-
pare the number of context-insensitive and context-sensitive
prior accesses; for three programs, context sensitivity yields
more distinct prior accesses. Dynamic races (last column)
vary greatly across the programs.

We have evaluated the possibility that adding context
sensitivity with the CCU or CCT could impact the number of
races reported (results not shown). However, the number of
distinct and dynamic races reported do not vary significantly
across configurations: the 95% confidence intervals always

10 https://bugs.eclipse.org/bugs/show_bug.cgi?id=115789
11 Prior work reports this site and another in NavigationHistory [15]. This
difference is due to the differing instrumentation strategies described earlier.

Distinct Dynamic
Context Context

insensitive sensitive
eclipse 41 59 667,230
hsqldb 9 22 336
lusearch 81 81 21,035,554
xalan 11 14 138
pseudojbb 21 21 920,462

Table 4. Distinct, prior context-insensitive accesses and context-
sensitive accesses. The last column is dynamic data races reported.

6-10 16-20 26-30 36-40 46-50
1-5 11-15 21-25 31-35 41-45 51-55

eclipse 17 4 2 9 2 3 5 7 4 3 3
hsqldb 10 4 8 0 0 0 0 0 0 0 0
lusearch 35 15 31 0 0 0 0 0 0 0 0
xalan 4 4 0 0 2 4 0 0 0 0 0
pseudojbb 20 1 0 0 0 0 0 0 0 0 0

Table 5. Histogram showing the depth (in call sites) of context-
sensitive sites reported by the race detector.

overlap—except in one case, which is not significant given
the number of independent comparisons involved.

Table 5 is a histogram showing the depths, in terms of
number of sites, of distinct, context-sensitive prior racy ac-
cesses. Many contexts, especially for eclipse, are dozens of
sites long, suggesting the potential for calling contexts to
provide significantly more information to developers than
static program locations.

7. Related Work
Section 2.1 compared our CCU-based approach with a CCT-
based approach. This section discusses other alternatives
for providing dynamic context sensitivity, plus other related
topics.

Walking the stack. Client analyses can simply walk the
entire call stack at each client site [16, 24, 37, 44, 50, 56],
which is expensive when client sites execute frequently.
Stack-walking approaches typically store nodes in a CCT
for space efficiency. Prior work walks the stack until it en-
counters a stack frame that has already looked up its CCT
node [50, 56], which is equivalent to lazy construction of the
CCT (Section 3.1).

Reconstructing calling context. Recent work introduces
several approaches that represent calling contexts as integer
values and reconstruct calling contexts from these values on
demand. Ultimately, mapping contexts to values is challeng-
ing because the number of statically possible calling con-
texts easily exceeds 264 for real, complex programs—not in-
cluding recursion, which leads to infinitely many statically
possible contexts.

Sumner et al. introduce precise calling context encoding
(PCCE), which represents each calling context with a unique
integer value [48]. Instrumentation at each call site incre-
mentally computes the current calling context’s value. PCCE

computes these increments at compile time by applying the
Ball–Larus intraprocedural path profiling algorithm [7] to
the call graph.12 This algorithm also enables efficient recon-
struction of a calling context from its value.

While PCCE enables efficient encoding and profiling of
calling contexts, it is fundamentally solving different prob-
lems than our CCU-based approach. First, PCCE is not well
suited to providing context sensitivity for bug detection anal-
yses. To handle the challenge of many statically possible
paths, PCCE represents a single context with a variable num-
ber of integers. We believe that supporting variable-sized,
per-object metadata would add significant overhead to a
client, but the PCCE paper does not evaluate any clients [48].

Second, PCCE is inherently unable to handle dynamic
class loading and virtual method dispatch, limiting its ap-
plicability. PCCE relies on knowing the static call graph at
compile time in order to number the call graph using the
Ball–Larus algorithm, which is not possible under dynamic
class loading. PCCE relies on instrumenting call edges effi-
ciently, but instrumenting virtual method calls incurs extra
costs [40]. PCCE handles indirect calls (e.g., indirect calls
via method pointers in C) by adding an integer to the stack
of integers that represent context, which is reasonable if in-
direct calls are rare, but would add high time and space over-
head if used to handle the uncertainty introduced by dynamic
class loading and virtual method dispatch.

Breadcrumbs handles dynamic class loading and virtual
method dispatch, and it maps each calling context to a sin-
gle integer word [13]. It computes a probabilistically unique
value for each calling context by computing an incremen-
tal hash function at each call site [16]. Because the num-
ber of statically possible contexts greatly exceeds both 264

and the number of dynamically executed contexts, Bread-
crumbs also records some dynamic information—the con-
text values observed at cold call sites—in order to help guide
reconstruction of contexts. Nonetheless, reconstruction of
contexts is complex, may take seconds, and may fail to re-
construct the correct context. Breadcrumbs thus provides a
time–accuracy tradeoff, since collecting more dynamic in-
formation provides better reconstruction accuracy.

Mytkowicz et al. and Inoue and Nakatani propose to re-
construct contexts from existing run-time values such as pro-
gram counters and stack depth [28, 35]. These approaches
add virtually no overhead, but the values they use have
significantly less entropy than Breadcrumbs’ probabilisti-
cally unique values. To reduce value conflicts between stack
depths, Mytkowicz et al. pad the call stack based on profil-
ing, which helps accuracy somewhat but not enough to scale
to complex programs with many distinct calling contexts.

Other approaches. A call tree constructs a new node for
every dynamic call [3], but each call tree node maintains

12 Wiedermann also applies Ball–Larus path profiling to the call graph but
does not handle recursion nor the number of paths exceeding the integer
size [51].

pointers to its child nodes, making it expensive to construct
nodes and difficult for GC to collect irrelevant nodes (since
all nodes remain reachable). Analyses can build and main-
tain a dynamic call graph, which maintains only one node
per static call site, losing the ability to reconstruct client
sites’ calling contexts [40].

Recent work profiles all contexts using a CCT-based,
VM-independent approach, but the technique focuses on
portability and minimizing space overhead and adds higher
overhead than high-performance CCT profilers [42].

Recent work proposes an alternative to the CCT in which
contexts are bounded to depth k to save space and increase
utility compared to an infinite-depth CCT [6]. This approach
still requires an expensive hash lookup like the CCT.

Prior work uses sampling and data mining to trade ac-
curacy for lower overhead when collecting calling con-
texts [20, 27, 56]. This tradeoff is worthwhile for deter-
mining hot program behavior for performance optimization.
However, cold program behavior is critical for bug detec-
tion [18, 33].

Hash consing merges equivalent objects [4], and prior
work uses hash consing to compact dynamic call trees [29].
The CCU- and CCT-based approaches are essentially per-
forming hash consing of nodes: the CCT performs hash con-
sing eagerly, and the CCU performs hash consing lazily.

8. Conclusion
Growing complexity and concurrency mean that static pro-
gram location is not enough to help programmers understand
dynamic program behavior. This paper presents a new ap-
proach for providing context sensitivity to dynamic analy-
ses, especially bug detectors that report bug causes. Calling
context uptree (CCU) nodes cannot be reused but are fast to
construct. Tracing garbage collection and a lazy merging al-
gorithm are key components that keep space overhead low.
We demonstrate a CCU-based approach’s potential to out-
perform a CCT-based approach when adding context sensi-
tivity to bug detection analyses, offering an appealing direc-
tion for future work on context-sensitive dynamic analysis.

Acknowledgments
We thank Daniel Frampton, Sam Guyer, Kathryn McKin-
ley, Feng Qin, and Nasko Rountev for valuable discus-
sions, ideas, and support. Thanks to Swarnendu Biswas,
Todd Mytkowicz, Nasko Rountev, Aritra Sengupta, Xiangyu
Zhang, and the anonymous reviewers for helpful feedback
on the text; and to Man Cao, Aritra Sengupta, and Minjia
Zhang for help with the artifact evaluation submission.

References
[1] H. Agrawal and J. R. Horgan. Dynamic Program Slicing.

In ACM Conference on Programming Language Design and
Implementation, pages 246–256, 1990.

[2] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi,
P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKin-
ley, M. Mergen, J. E. B. Moss, T. Ngo, and V. Sarkar. The
Jikes Research Virtual Machine Project: Building an Open-
Source Research Community. IBM Systems Journal, 44:399–
417, 2005.

[3] G. Ammons, T. Ball, and J. R. Larus. Exploiting Hardware
Performance Counters with Flow and Context Sensitive Pro-
filing. In ACM Conference on Programming Language Design
and Implementation, pages 85–96, 1997.

[4] A. W. Appel and M. J. R. Goncalves. Hash-Consing Garbage
Collection. Technical Report TR-412-93, Princeton Univer-
sity, 1993.

[5] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney.
Adaptive Optimization in the Jalapeño JVM. In ACM Confer-
ence on Object-Oriented Programming, Systems, Languages,
and Applications, pages 47–65, 2000.

[6] G. Ausiello, C. Demetrescu, I. Finocchi, and D. Firmani. k-
Calling Context Profiling. In ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions, pages 867–878, 2012.

[7] T. Ball and J. R. Larus. Efficient Path Profiling. In IEEE/ACM
International Symposium on Microarchitecture, pages 46–57,
1996.

[8] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and
Realities: The Performance Impact of Garbage Collection. In
ACM SIGMETRICS Joint International Conference on Mea-
surement and Modeling of Computer Systems, pages 25–36,
2004.

[9] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Framp-
ton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,
J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo Bench-
marks: Java Benchmarking Development and Analysis. In
ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 169–190, 2006.

[10] S. M. Blackburn and A. L. Hosking. Barriers: Friend or Foe?
In ACM International Symposium on Memory Management,
pages 143–151, 2004.

[11] S. M. Blackburn and K. S. McKinley. Ulterior Reference
Counting: Fast Garbage Collection Without a Long Wait. In
ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 344–358, 2003.

[12] S. M. Blackburn and K. S. McKinley. Immix: A Mark-Region
Garbage Collector with Space Efficiency, Fast Collection, and
Mutator Performance. In ACM Conference on Programming
Language Design and Implementation, pages 22–32, 2008.

[13] M. D. Bond, G. Z. Baker, and S. Z. Guyer. Breadcrumbs: Ef-
ficient Context Sensitivity for Dynamic Bug Detection Anal-
yses. In ACM Conference on Programming Language Design
and Implementation, pages 13–24, 2010.

[14] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer:
Proportional Detection of Data Races. In ACM Conference on
Programming Language Design and Implementation, pages
255–268, 2010.

[15] M. D. Bond and K. S. McKinley. Bell: Bit-Encoding Online
Memory Leak Detection. In ACM International Conference
on Architectural Support for Programming Languages and
Operating Systems, pages 61–72, 2006.

[16] M. D. Bond and K. S. McKinley. Probabilistic Calling Con-
text. In ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 97–112, 2007.

[17] M. D. Bond and K. S. McKinley. Leak Pruning. In ACM
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 277–
288, 2009.

[18] T. M. Chilimbi and M. Hauswirth. Low-Overhead Mem-
ory Leak Detection Using Adaptive Statistical Profiling. In
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 156–
164, 2004.

[19] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and
M. Sridharan. Efficient and Precise Datarace Detection for
Multithreaded Object-Oriented Programs. In ACM Confer-
ence on Programming Language Design and Implementation,
pages 258–269, 2002.

[20] D. C. D’Elia, C. Demetrescu, and I. Finocchi. Mining Hot
Calling Contexts in Small Space. In ACM Conference on
Programming Language Design and Implementation, pages
516–527, 2011.

[21] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A Race and
Transaction-Aware Java Runtime. In ACM Conference on
Programming Language Design and Implementation, pages
245–255, 2007.

[22] C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise
Dynamic Race Detection. In ACM Conference on Program-
ming Language Design and Implementation, pages 121–133,
2009.

[23] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A Sound
and Complete Dynamic Atomicity Checker for Multithreaded
Programs. In ACM Conference on Programming Language
Design and Implementation, pages 293–303, 2008.

[24] N. Froyd, J. Mellor-Crummey, and R. Fowler. Low-Overhead
Call Path Profiling of Unmodified, Optimized Code. In ACM
International Conference on Supercomputing, pages 81–90,
2005.

[25] R. Garner, S. M. Blackburn, and D. Frampton. Effective
Prefetch for Mark-Sweep Garbage Collection. In ACM Inter-
national Symposium on Memory Management, pages 43–54,
2007.

[26] B. Goetz. Plugging memory leaks with weak refer-
ences, 2005. http://www-128.ibm.com/developerworks/

java/library/j-jtp11225/.

[27] K. Hazelwood and D. Grove. Adaptive Online Context-
Sensitive Inlining. In IEEE/ACM International Symposium
on Code Generation and Optimization, pages 253–264, 2003.

[28] H. Inoue and T. Nakatani. How a Java VM can get more
from a Hardware Performance Monitor. In ACM Conference
on Object-Oriented Programming, Systems, Languages, and
Applications, pages 137–154, 2009.

[29] D. F. Jerding, J. T. Stasko, and T. Ball. Visualizing Interactions
in Program Executions. In ACM International Conference on
Software Engineering, pages 360–370, 1997.

[30] R. Jones and R. Lins. Garbage Collection: Algorithms for
Automatic Dynamic Memory Management. John Wiley &
Sons, Inc., New York, NY, USA, 1996.

[31] M. Jump and K. S. McKinley. Cork: Dynamic Memory
Leak Detection for Garbage-Collected Languages. In ACM
Symposium on Principles of Programming Languages, pages
31–38, 2007.

[32] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting
Atomicity Violations via Access-Interleaving Invariants. In
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 37–
48, 2006.

[33] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace:
Effective Sampling for Lightweight Data-Race Detection. In
ACM Conference on Programming Language Design and Im-
plementation, pages 134–143, 2009.

[34] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized
Object Sensitivity for Points-to and Side-Effect Analyses for
Java. In ACM International Symposium on Software Testing
and Analysis, pages 1–11, 2002.

[35] T. Mytkowicz, D. Coughlin, and A. Diwan. Inferred Call Path
Profiling. In ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 175–190,
2009.

[36] N. Nethercote and J. Seward. How to Shadow Every Byte of
Memory Used by a Program. In ACM/USENIX International
Conference on Virtual Execution Environments, pages 65–74,
2007.

[37] N. Nethercote and J. Seward. Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation. In ACM Con-
ference on Programming Language Design and Implementa-
tion, pages 89–100, 2007.

[38] G. Novark, E. D. Berger, and B. G. Zorn. Efficiently and Pre-
cisely Locating Memory Leaks and Bloat. In ACM Confer-
ence on Programming Language Design and Implementation,
pages 397–407, 2009.

[39] E. Pozniansky and A. Schuster. MultiRace: Efficient On-
the-Fly Data Race Detection in Multithreaded C++ Pro-
grams. Concurrency and Computation: Practice & Experi-
ence, 19(3):327–340, 2007.

[40] F. Qian and L. Hendren. Towards Dynamic Interprocedural
Analysis in JVMs. In USENIX Symposium on Virtual Machine
Research and Technology, pages 139–150, 2004.

[41] F. Qin, S. Lu, and Y. Zhou. SafeMem: Exploiting ECC-
Memory for Detecting Memory Leaks and Memory Corrup-
tion During Production Runs. In International Symposium
on High-Performance Computer Architecture, pages 291–302,
2005.

[42] A. Sarimbekov, A. Sewe, W. Binder, P. Moret, M. Schoeberl,
and M. Mezini. Portable and Accurate Collection of Calling-
Context-Sensitive Bytecode Metrics for the Java Virtual Ma-
chine. In ACM International Conference on Principles and
Practice of Programming in Java, pages 11–20, 2011.

[43] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: A Dynamic Data Race Detector for Multi-
Threaded Programs. In ACM Symposium on Operating Sys-
tems Principles, pages 27–37, 1997.

[44] J. Seward and N. Nethercote. Using Valgrind to Detect Un-
defined Value Errors with Bit-Precision. In USENIX Annual
Technical Conference, pages 17–30, 2005.

[45] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick Your
Contexts Well: Understanding Object-Sensitivity. In ACM
Symposium on Principles of Programming Languages, pages
17–30, 2011.

[46] J. M. Spivey. Fast, Accurate Call Graph Profiling. Softw.
Pract. Exper., 34(3):249–264, 2004.

[47] Standard Performance Evaluation Corporation. SPECjbb2000
Documentation, release 1.01 edition, 2001.

[48] W. N. Sumner, Y. Zheng, D. Weeratunge, and X. Zhang.
Precise Calling Context Encoding. In ACM International
Conference on Software Engineering, pages 525–534, 2010.

[49] C. von Praun and T. R. Gross. Object Race Detection. In
ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 70–82, 2001.

[50] J. Whaley. A Portable Sampling-Based Profiler for Java Vir-
tual Machines. In ACM Conference on Java Grande, pages
78–87, 2000.

[51] B. Wiedermann. Know your Place: Selectively Executing
Statements Based on Context. Technical Report TR-07-38,
University of Texas at Austin, 2007.

[52] G. Xu and A. Rountev. Precise Memory Leak Detection for
Java Software Using Container Profiling. In ACM Interna-
tional Conference on Software Engineering, pages 151–160,
2008.

[53] X. Yang, S. M. Blackburn, D. Frampton, and A. L. Hosking.
Barriers Reconsidered, Friendlier Still! In ACM International
Symposium on Memory Management, pages 37–48, 2012.

[54] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: Efficient
Detection of Data Race Conditions via Adaptive Tracking.
In ACM Symposium on Operating Systems Principles, pages
221–234, 2005.

[55] X. Zhang, N. Gupta, and R. Gupta. Pruning Dynamic Slices
with Confidence. In ACM Conference on Programming Lan-
guage Design and Implementation, pages 169–180, 2006.

[56] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi. Ac-
curate, Efficient, and Adaptive Calling Context Profiling. In
ACM Conference on Programming Language Design and Im-
plementation, pages 263–271, 2006.

