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Fine-grained information flow control (IFC) ensures confidentiality and integrity at the programming language
level by ensuring that high-secrecy values do not affect low-secrecy values and that low-integrity values do
not affect high-integrity values. However, prior support for fine-grained IFC is impractical: It either analyzes
programs using whole-program static analysis, detecting false IFC violations; or it extends the language and
compiler, thwarting adoption. Recent work called Cocoon demonstrates how to provide fine-grained IFC for
Rust programs without modifying the language or compiler, but it is limited to static secrecy labels, and its case
studies are limited. This paper introduces an approach called Carapace that employs Cocoon’s core approach
and supports both static and dynamic IFC and supports both secrecy and integrity. We demonstrate Carapace
using three case studies involving real applications and comprehensive security policies. An evaluation
shows that applications can be retrofitted to use Carapace with relatively few changes, while incurring
negligible run-time overhead in most cases. Carapace advances the state of the art by being the first hybrid
static–dynamic IFC that works with an off-the-shelf language—Rust—and its unmodified compiler.
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Access protection.
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1 Introduction
Confidentiality and integrity are fundamental parts of secure computing systems. This paper is
focused on fine-grained confidentiality and integrity policies, which ensure that applications granted
privileges by the OS do not violate confidentiality and integrity. Consider a calendar application
granted privileges to (1) read Alice’s and Bob’s calendars and (2) send data to Alice and Bob. Suppose
the application should not reveal anything about Alice’s calendar to Bob, or vice versa—except the
calendars’ overlapping availability may be revealed. This is a fine-grained confidentiality policy.
Today’s applications provide fine-grained confidentiality and integrity by employing access

control, which limits which entities may access which data, but does not control what happens to the
data after being accessed. Access control cannot guarantee the calendar application’s confidentiality
policy, requiring the application to be part of the trusted computing base (TCB).
A strong alternative to access control is information flow control (IFC), which ensures confiden-

tiality and integrity through noninterference: High-secrecy data cannot affect low-secrecy data,
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and low-integrity data cannot affect high-integrity data [27, 37, 43, 48]. IFC can guarantee that the
calendar’s confidentiality policy is enforced. IFC also effectively removes applications from the
TCB, except for explicit declassify and endorse operations, which must be trusted and audited.

Despite its benefits, fine-grained IFC is not used in practice because all existing approaches are
impractical. As §2.3 covers in detail, prior work that uses whole-program static analysis to compute
information flows is non-compositional, resulting in numerous false flows that are difficult for
developers to reckon with. Prior work employing type-based static analysis or dynamic analysis
avoids false flows, but existing solutions for mainstream imperative languages rely on changing
the language and compiler (or introducing a source-to-source translator). Relying on a modified
language and compiler is a substantial impediment to adoption: Programs must be (re)written in
the modified language, and compiler modifications must be maintained and trusted.

An exception to the above limitations is type-based static IFC for Rust, called Cocoon, that requires
no changes to the Rust language or compiler [35]. Programs using the Cocoon library are unable to
violate noninterference, except through explicitly denoted declassification operations or explicitly
unsafe Rust code. However, Cocoon has significant shortcomings limiting its practicality:

• Cocoon supports only static IFC, not dynamic IFC. Dynamic IFC is essential for many real security
policies, particularly for data originating outside the process, which generally has secrecy and
integrity levels not known at compile time. Since static IFC avoids run-time costs and run-time
IFC violations, hybrid static–dynamic IFC is ideal.
• Cocoon supports secrecy but not integrity.
• Cocoon’s case studies used narrow security policies that protected a single value with limited
information flow, instead of a comprehensive policy such as protecting all user input data.

This paper addresses these limitations with novel support for fine-grained, hybrid static–dynamic
IFC called Carapace. Carapace innovates by supporting both static labels and dynamic labels, as
static types and run-time values, respectively, without sacrificing noninterference guarantees or
requiring language or compiler changes.

To demonstrate and evaluate Carapace, we used it to retrofit three real, open-source Rust appli-
cations: an application that computes overlap and other information about multiple calendars from
disparate sources, a multiplayer video game, and the Servo web rendering engine. We retrofitted
the applications with realistic, comprehensive security and integrity policies. The evaluation shows
that the retrofitted applications enforce the target security policy, Carapace can be incrementally
deployed, and run-time overhead is negligible.

This work has the following contributions:

• The novelty of Carapace is in adding support for dynamic IFC to Cocoon while retaining
compatibility with the unmodified Rust language and compiler (albeit relying on some unstable
Rust features), paving the way for adoption.
• We apply Carapace to three real applications, demonstrating its potential as a practical solution.

While Carapace overcomes practicality limitations of prior work, practical challenges remain (§4.6).
Overall, this work advances the state of the art by demonstrating fine-grained IFC for off-the-shelf
Rust and its compiler that is powerful enough to provide real security policies in real applications.

2 Motivation, Background, and Limitations of Prior Work
This section motivates and gives technical background on fine-grained information flow control
(IFC). It describes why prior work has failed to provide practical fine-grained IFC, articulating the
challenges that a solution must address.
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1 pub fn compute_average(grades: &Vec<i32>) -> i32 {
2 let mut total = 0;
3 for grade in grades {
4 total += grade;
5 }
6 total / grades.len()
7 }
8 ...
9 let grades: Vec<i32> = ...; /* read student-private grades from data store */
10 let avg = compute_average(&grades);
11 ... avg ... /* write student-visible grade average to data store */

Fig. 1. Rust code that computes and prints an average of student grades.

2.1 Motivating Example
Fig. 1 shows Rust code for computing the average of student grades that could be part of a gradebook
application. Suppose the application process has (coarse-grained) privileges to read student grade
data from outside the process (e.g., from a data store; line 9) and to write data back to the data
store that will be visible to all students (line 11). The application should not be allowed to reveal
students’ grades to other students—a fine-grained secrecy policy. The application should only use
grade data entered by the teacher to compute the average—is a fine-grained integrity policy.
Fine-grained IFC can enforce these policies through noninterference (§ 1): Data shown to a

student should not be affected by another student’s grade (secrecy), and the grade average shown
to students should only be the result of data entered by the teacher (integrity).

If we want to allow the average grade to be shared with all students, then Fig. 1’s code actually
needs to violate noninterference. The application developer can allow the average to be “leaked” to
student users by using an explicit declassify operation in the code, which is a trusted operation that
should be audited. A similar endorse operation allows low-integrity data to affect high-integrity
data. Later we show how this paper’s IFC approach supports the grade average example.

2.2 Fine-Grained IFC Model
Our work uses the decentralized IFC (DIFC) model from prior work [34, 42–44, 49]. Every data value
v has a secrecy label 𝑆v and integrity label 𝐼v . A label is a set of tags, sometimes called policies,
which represent levels of secrecy and integrity. For example, if asec is a secrecy tag for student
Alice’s grades, then value v having secrecy label 𝑆v = {asec} means that v is secret to Alice. Labels,
being sets of tags, naturally define a lattice based on inclusion. For secrecy labels 𝑆 and 𝑆 ′, 𝑆 ⊆ 𝑆 ′

means 𝑆 ′ is at least as secret as 𝑆 . For integrity labels 𝐼 and 𝐼 ′, 𝐼 ⊆ 𝐼 ′ means 𝐼 ′ has higher or the same
integrity as 𝐼 . The join operations for secrecy and integrity are union and intersection, respectively:
If v′′ is derived from v and v′ (i.e., v′′ ← v ⊕ v′), then 𝑆v′′ = 𝑆v ∪ 𝑆v′ and 𝐼v′′ = 𝐼v ∩ 𝐼v′ .

A principal is an entity that operates on data, such as a user or process. Every principal 𝑃 has a
capability set 𝐶𝑃 that may include t− for any secrecy tag t, which allows the principal to declassify
data (i.e., decrease secrecy), and t+ for any integrity tag t, which allows the principal to endorse
data (i.e., increase integrity).1 For example, suppose the teacher Xenia is a principal with capability
set {a−sec, b−sec, x−sec, a+int, b+int}, meaning she can declassify the grades of students Alice and Bob, can
declassify grades labeled with her secrecy tag xsec , and can endorse grades coming from students
Alice and Bob as trusted. When Xenia runs the gradebook application, the application process is

1Some work also allows the capability t+ for a secrecy tag (increasing secrecy) and t− for an integrity tag (decreasing
integrity). In our model, these tags are implicitly part of every capability set.
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Table 1. Qualitative comparison of prior fine-grained IFC approaches targeting mainstream imperative

languages. * Cocoon uses type-based static analysis without language or compiler modifications [35].
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Static IFC Interprocedural analysis [7, 22, 26, 63] Yes No No Zero

Type-based analysis [16, 18, 33, 42–44, 53, 55, 56, 61] No∗ Yes No Zero

Dynamic IFC Dynamic analysis [5, 6, 13, 24, 49, 54, 62] No Yes Yes High

Hybrid IFC Hybrid analysis [12, 15, 17, 20, 23, 51, 64] No Depends Yes Medium

a principal 𝑃 that inherits her capabilities. The a−sec and b−sec capabilities allow 𝑃 to declassify the
student average. In contrast, the student user Alice is a principal with capability set {a−sec}; when
Alice runs the gradebook application, the application process cannot successfully declassify the
average of Alice and Bob’s grades, which has secrecy label 𝑆v = {asec, bsec}.

In a nutshell, fine-grained IFC can prevent the gradebook application from violating noninterfer-
ence without explicit action from the teacher.

2.3 Existing Approaches and Their Limitations
Supporting fine-grained IFC means enforcing noninterference at the granularity of program values.
Static fine-grained IFC enforces noninterference on the static program (i.e., at compile time) at the
level of expressions and variables. Dynamic IFC enforces noninterference at run time on memory
locations and their values. Static and dynamic IFC are complementary. Unlike dynamic IFC, static
IFC adds no run-time overhead and avoids run-time IFC failures. On the other hand, only dynamic
IFC supports values with labels that are not known until run time—which are common in real
security policies. For example, if Fig. 1 is converted to enforce IFC, the labels of grades will not be
known until run time, because the students are not known until run time.
Table 1 compares prior fine-grained IFC approaches qualitatively. Static IFC can be achieved

through static analysis that is either whole-program (i.e., interprocedural) or type-based.Whole-
program analysis is non-compositional—imprecision analyzing one part of a program affects preci-
sion analyzing the rest of the program—so it detects false noninterference violations, with little
recourse for developers. Type-based analysis uses type annotations and inference to perform com-
positional analysis; intuitively, programmers refine types in order to achieve precise IFC. However,
prior type-based approaches modify the language and/or compiler (because mainstream impera-
tive languages do not provide type systems expressive enough for type-based analysis for IFC2),
thwarting adoption. Recent work called Cocoon, which we overview below, introduces type-based
static analysis for the unmodified Rust language and compiler, but it has some key limitations.

Dynamic analysis tracks secrecy and integrity labels of program values at run time. It can avoid
language modifications by simply tracking every value’s label, but it still requires modifying the
compiler or creating a standalone tool to instrument the program. Much work on IFC enforcement
for JavaScript uses this approach (§11). Alternatively, dynamic analysis can rely on programmer
annotations of variables, expressions, and code that use high-secrecy or low-integrity values, which
reduces run-time overhead but requires both language and compiler modifications.
2Prior work shows how to provide type-based static analysis without modifying the language for two functional languages,
Haskell (using its support for monads) and Idris (using its support for dependent types) [25, 50, 58, 59].
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Some prior work supports fine-grained, hybrid static–dynamic IFC. Jif, which is primarily static
type-based IFC [44], provides support for dynamic labels as first-class values [64]. Jif requires
modifying the (Java) language and provides a translator to Java source (§4.2). Other prior work
hybridizes static and dynamic IFC by using a combination of static and dynamic analyses to
analyze (primarily JavaScript) programs [12, 15, 20, 51] (§11). Tianyu and Siek show how to achieve
noninterference guarantees in the context of gradual typing [17]. RLBox combines static type-based
analysis and run-time isolation to prevent flows between untrusted C++ libraries, but relies on
programmers writing correct validation checks [45]. Sesame enforces confidentiality policies in
Rust programs and provides annotated code regions for accessing secret data [23]. Sesame relies
on static analysis implemented as a compiler plugin to ensure regions are side effect free, and it
employs dynamic sandboxing as a fallback when static analysis cannot ensure side effect freedom.

Cocoon. Recent work introduces static IFC for Rust called Cocoon [35] that uses static type-based
analysis. Unlike other static type-based approaches, Cocoon does not alter a language or compiler,
but is implemented as a Rust library. Applications use the library and the standard Rust language
and compiler, and a program that violates noninterference is not type-correct and will not compile.
To use Cocoon to enforce a static IFC policy, the application developer uses types and code

constructs provided by the Cocoon library. Every value with a non-empty secrecy label is wrapped
in a Cocoon-provided secure type. (Cocoon supports secrecy but not integrity.) Code that operates
on secure values must be enclosed in a Cocoon-provided secure block, a lexically scoped block of
code with a secrecy label. To ensure noninterference in secure blocks, Cocoon leverages Rust’s
expressive typing and procedural macros, providing a rudimentary type and effect system [46].
Cocoon has three significant limitations: (1) it supports only static IFC, not dynamic IFC; (2) it

supports only secrecy labels, not integrity labels; and (3) it was evaluated using narrow security
policies. A fourth limitation, which this paper only partially addresses, is that Cocoon restricts the
programming model within secure blocks, as a consequence of ensuring side effect freedom (§4.6).

Goals. To address these limitations, the following goals must be met while maintaining noninter-
ference guarantees and supporting an unmodified Rust language and compiler:

• support for dynamic labels in addition to static labels;
• support for integrity labels (both static and dynamic) in addition to secrecy labels; and
• demonstration of realistic, comprehensive IFC policies in real applications.

The first two are design challenges, while the third is a case study and evaluation challenge.

3 Carapace Overview
Carapace is a novel, fine-grained, hybrid static–dynamic IFC approach. It is provided as a Rust
library that applications use to ensure IFC. In this context, the trusted computing base (TCB)
consists of Carapace, the Rust compiler, and the Rust Standard Library. Application code using
Carapace is untrusted (i.e., not part of the TCB) because Carapace ensures noninterference, with
the exception of two kinds of code that must be trusted and audited: (1) code explicitly denoted as
declassifying or endorsing data and (2) explicitly unsafe code (code that uses Rust’s unsafe keyword).
Carapace follows the IFC model described in §2.2. Every program value has both static and

dynamic labels. Program values implicitly have default labels unless they are wrapped in a special
Carapace-provided type. Furthermore, application code can only access wrapped values inside
of lexically scoped regions called secure blocks. A special kind of secure block, called a trusted
secure block, can declassify and endorse values (in accordance with capabilities inherited from its
ancestors); its code must be trusted or audited.
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Carapace advances the state of the art by overcoming the limitations of prior work and achieving
the goals listed in the last section. The next two sections describe Carapace: §4 presents Carapace’s
programming model, and §5 explains how Carapace enforces IFC by ensuring noninterference.

4 Carapace’s Programming Model
This section describes Carapace at the application programming level and presents example
application code. It refers throughout to Figs. 2 and 3, which summarize the programming model.

4.1 IFC Model
Carapace provides the IFC model described in §2.2, with support for static and dynamic labels
and for secrecy and integrity labels. Like most prior work on fine-grained IFC, Carapace provides
termination-insensitive noninterference, which relaxes noninterference by allowing high-secrecy
values to affect whether the program terminates [1, 3]. Thus the model does not prevent termination
channels. It also does not prevent side channels such as timing and microarchitectural channels.

Carapace provides declassification and endorsement operations to circumvent noninterference;
these operations must be audited and trusted. Carapace cannot provide guarantees for unsafe code,
which Rust requires be explicitly denoted with the unsafe keyword and be audited for memory and
concurrency safety. When using Carapace, any unsafe code must also be audited for security.
Our model defines integrity as the dual of confidentiality—untrusted inputs should not affect

trusted outputs—which follows much of the prior work [27, 41, 43, 44, 53]. Notably, application code
has highest integrity. Strengthening integrity to include correctness requires verification [14, 21, 53].

4.2 Static and Dynamic Labels
Carapace provides hybrid static–dynamic IFC by supporting both static and dynamic labels. Static
and dynamic labels differ in how they are represented and checked. Static labels are represented as
static types associated with variables and expressions, which the compiler checks. Dynamic labels
are represented as values associated with program run-time values, which are checked by run-time
analysis. A label is either static or dynamic—it consists entirely of static or dynamic tags, not both.

Carapace supports both secrecy and integrity. Secrecy labels contain only secrecy tags; integrity
labels contain only integrity tags. Thus there are four kinds of labels and tags: static secrecy, static
integrity, dynamic secrecy, and dynamic integrity.

Static tags exist statically (i.e., at compile time). The static capabilities an application needs can
be checked at compile time, so the program will fail upon startup if executed with insufficient static
capabilities. Dynamic tags exist at run time; they may be created by the application process or
another process. A dynamic tag created by process 𝑃 is automatically added to 𝑃 ’s capability set:
𝐶𝑃 ← 𝐶𝑃 ∪ {t−} if t is a dynamic secrecy tag, while 𝐶𝑃 ← 𝐶𝑃 ∪ {t+} if t is a dynamic integrity tag.

The default static and dynamic secrecy labels are both ∅ (empty set), representing lowest secrecy.
The default static and dynamic integrity labels are Ust

𝑃
≡ {𝑡 | 𝑡+ ∈ 𝐶st

𝑃
} and Udyn

𝑃
≡ {𝑡 | 𝑡+ ∈ 𝐶dyn

𝑃
},

respectively, consisting of all (static or dynamic) integrity tags that the principal has the capability
to add, representing highest integrity. Note that using Ust

𝑃
and Udyn

𝑃
as the default integrity labels

has the (intended) effect of treating the application code itself as high integrity.
Fig. 2a shows the lattice of Carapace’s static secrecy labels, each represented by a static type,

for an application using two static secrecy tags. Fig. 2b shows the lattice of static integrity labels
when there are two static integrity tags. Since the default static integrity label Ust

𝑃
consists of all

static integrity tags, static integrity labels are defined in terms of whether they do not contain
static integrity tags. §5 explains how type constraints enforce the ordering defined by these lattices.
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StatSecLabel::AB

StatSecLabel::A StatSecLabel::B

StatSecLabel::Empty (default)

(a) Lattice of static secrecy labels. Higher-

secrecy labels are above lower-secrecy labels.

StatIntLabel::All (default)

StatIntLabel::NotX StatIntLabel::NotY

StatIntLabel::NotXY

(b) Lattice of static integrity labels. Higher-integrity

labels are above lower-integrity labels.

API function Return value

DynSecLabel::empty() -> DynSecLabel Default dynamic secrecy label 𝑆dyn = ∅

DynIntLabel::all() -> DynIntLabel Default dynamic integrity label 𝐼dyn = U
dyn
𝑃

DynSecLabel::new(t: DynSecTag) -> DynSecLabel Dynamic secrecy label 𝑆dyn = {𝑡}

DynIntLabel::new(t: DynIntTag) -> DynIntLabel Dynamic integrity label 𝐼dyn = U
dyn
𝑃
\ {𝑡}

DynSecLabel::join(&self,

other: &DynSecLabel) -> DynSecLabel

Dynamic secrecy label that is union of self and other

DynIntLabel::join(&self,

other: &DynIntLabel) -> DynIntLabel

Dynamic integrity label that is intersection of self
and other

(c) Dynamic labels, represented as values of type DynSecLabel or DynIntLabel, are opaque and immutable.

SecureValue<T: SecureValueSafe,
𝑆 stv : StatSecLabelType,
𝐼 stv : StatIntLabelType>

(d) SecureValue is the wrapper type for any value

v with non-default secrecy and/or integrity. It is

type-parameterized on static labels 𝑆stv and 𝐼 stv .

Method Ret. val
SecureValue::get_dyn_sec_label(&self)

-> DynSecLabel

𝑆
dyn
v

SecureValue::get_dyn_int_label(&self)

-> DynIntLabel

𝐼
dyn
v

(e) A secure value’s dynamic labels 𝑆
dyn
v and 𝐼

dyn
v are run-

time values, which applications can query with getter

methods.

Fig. 2. Carapace’s programming model, part 1 of 2: labels and labeled data.

While these lattices only use two tags, there is no firm restriction on the number of tags that can be
used. Future work could provide a macro allowing applications to generate custom-sized lattices.

Fig. 2c shows the API for dynamic labels. Dynamic labels are represented by the DynSecLabel and
DynIntLabel types. A dynamic label is a run-time value that represents a set of dynamic tags (DynTag
instances). Dynamic tags and labels are immutable and opaque: Applications cannot change them,
nor perform comparison operations on them, preventing certain covert channels [44, 64].

4.3 Labeled Data
In an application using Carapace, every program value v has static secrecy 𝑆 stv , static integrity 𝐼 stv ,
dynamic secrecy 𝑆dynv , and dynamic integrity 𝐼 dynv , which default to the values described above. To
represent a value with non-default labels, Carapace provides a type called SecureValue, which acts
as a wrapper type for the value. As Fig. 2d shows, a SecureValue is type-parameterized on its static
labels 𝑆 stv and 𝐼 stv . Fig. 2e shows SecureValue’s getter methods for dynamic labels.
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untrusted_secure_block!(𝑆 stP , 𝐼 stP , 𝑆
dyn
P , 𝐼

dyn
P , body)

trusted_secure_block!(𝑆 stP , 𝐼 stP , 𝑆
dyn
P , 𝐼

dyn
P , 𝑆 stout, 𝐼 stout, 𝑆

dyn
out , 𝐼

dyn
out , body)

(a) Syntax for specifying trusted and untrusted secure blocks. 𝑆stP , 𝐼
st
P , 𝑆

dyn
P , and 𝐼

dyn
P represent, respectively, the

static secrecy, static integrity, dynamic secrecy, and dynamic integrity of the block 𝑃 . A trusted secure block

takes four additional parameters, 𝑆stout , 𝐼
st
out , 𝑆

dyn
out , and 𝐼

dyn
out , which are the labels of the block’s output value(s).

Operation and description of its behavior Type constraints Run-time checks
unwrap(v: SecureValue <T,𝑆stv ,𝐼 stv >) -> T 𝑆stv ⊆ 𝑆stP 𝑆

dyn
v ⊆ 𝑆

dyn
P

Evaluates to inner value 𝐼 stv ⊇ 𝐼 stP 𝐼
dyn
v ⊇ 𝐼

dyn
P

unwrap_ref(v: &SecureValue <T,𝑆stv ,𝐼 stv >) -> &T 𝑆stv ⊆ 𝑆stP 𝑆
dyn
v ⊆ 𝑆

dyn
P

Evaluates to immutable reference to value 𝐼 stv ⊇ 𝐼 stP 𝐼
dyn
v ⊇ 𝐼

dyn
P

unwrap_mut_ref(v: &mut SecureValue <T,𝑆stv ,𝐼 stv >) -> &mut T 𝑆stv = 𝑆stP 𝐼
dyn
v = 𝐼

dyn
P

Evaluates to mutable reference to value 𝑆stv = 𝑆stP 𝐼
dyn
v = 𝐼

dyn
P

(b) Operations for accessing the value in a SecureValue inside a secure block. 𝑆stP , 𝐼
st
P , 𝑆

dyn
P , and 𝐼

dyn
P are the

labels of the secure block.

Operation Evaluates to
wrap(v) in body of untrusted_secure_block! ( . . .) SecureValue <_,𝑆stP ,𝐼

st
P >::new(v, 𝑆dynP , 𝐼dynP )

wrap(v) in body of trusted_secure_block! ( . . .) SecureValue <_,𝑆stout ,𝐼
st
out>::new(v, 𝑆

dyn
out , 𝐼

dyn
out )

(c) Operation for creating a SecureValue-wrapped value inside of a secure block. 𝑆stP , 𝐼
st
P , 𝑆

dyn
P , and 𝐼

dyn
P are

the labels of the secure block; 𝑆stout , 𝐼
st
out , 𝑆

dyn
out , and 𝐼

dyn
out are the output labels of the trusted secure block.

Fig. 3. Carapace’s programming model, part 2 of 2: secure blocks and accesses to secure values.

4.4 Secure Blocks
Application code may access secure data (i.e., data wrapped in SecureValue instances) only in lexically
designated blocks called secure blocks. A secure block has uniform labels throughout, which restrict
the labels of values read, written, and returned by the block, constraining explicit and implicit flows.
A secure block is a principal that inherits capabilities from its parent, which may be the application
process or another secure block. Although a secure block could, in principle, specify a subset of its
parent’s capabilities, in our design a secure block has all its parent’s capabilities.

To support declassification and endorsement, Carapace provides a variant of the secure block,
called a trusted secure block. Trusted secure blocks allow flows from high- to low-secrecy values
and from low- to high-integrity values, so programmers should audit and trust the block’s code.

Fig. 3a shows the API for regular (untrusted) secure blocks and trusted secure blocks. (In §4.7 we
show example code that uses secure blocks.) The untrusted_secure_block! macro3 takes the block’s
four labels as input. Intuitively, the block enforces noninterference (e.g., high-secrecy values cannot
flow to low-secrecy values) by ensuring that the accesses in the block are consistent with the
block’s labels and that the block’s output value(s) are labeled with the block’s labels.
Likewise, trusted_secure_block! takes parameters 𝑆 stP , 𝐼

st
P , 𝑆

dyn
P , and 𝐼 dynP . It also takes parameters

indicating the labels of the block’s output value(s) (i.e., the block’s return value and any values the
block writes): 𝑆 stout , 𝐼 stout , 𝑆

dyn
out , and 𝐼

dyn
out . Carapace ensures that declassification and endorsement are

3In Rust, macro names are suffixed by the ! character.
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allowed by the secure block 𝑃 ’s capability set 𝐶𝑃 , by checking the following at run time:

(𝑆dynP \ 𝑆dynout ) ⊆ {𝑡 | 𝑡− ∈ 𝐶
dyn
𝑃
} ∧ (𝐼 dynout \ 𝐼

dyn
P ) ⊆ {𝑡 | 𝑡

+ ∈ 𝐶dyn
𝑃
}

Carapace does not need to perform analogous checks on static labels and capabilities because the
principal has full capabilities for all static tags (§4.2).

By requiring secure values to be accessed in lexically scoped blockswith uniform labels, Carapace
avoids many of the challenges related to implicit flows encountered by prior work (§5.3 and §11).

4.5 Accessing Secure Values in Secure Blocks
An application may access secure values (values wrapped in SecureValue) only in secure blocks. The
code in a secure block uses unwrap operations, shown in Fig. 3b, to access the wrapped value. The
unwrap operations differ in whether they return the value (unwrap) or a reference to it (unwrap_ref
and unwrap_mut_ref). The Type constraints column shows the static IFC checks that Carapace’s type
constraints enforce. The Run-time checks column shows the run-time checks that execute on each
unwrap call. Since unwrap and unwrap_ref allow read access only, their checks mitigate flows from
the value to the block, thus requiring subset checks. In contrast, unwrap_mut_ref allows both read
and write accesses, requiring equality checks to mitigate flows in both directions.
A violation of static type constraints is detected at compile time, causing a compiler error. A

violation of run-time checks (including trusted secure blocks’ capabilities checks) triggers a panic,
which is Rust’s mechanism for unexpected or unrecoverable run-time errors. Carapace handles
panics in a way that prevents high-bandwidth covert channels, as explained in §5.3.
Applications can create SecureValue instances only in secure blocks.4 As Fig. 3c shows, the wrap

operation creates a new SecureValue instance with the same output labels of the block. Note that
wrap is not a privileged operation—it requires no type constraints or run-time checks—because it
always evaluates to a value with the same labels as the containing secure block.

4.6 Practicality Limitations
Carapace addresses some key practical limitations of Cocoon. However, Carapace has remaining
practical limitations resulting from the requirement that all code in secure blocks be statically
guaranteed to be side effect free (§5.4). This requirement limits what values can be used in secure
blocks (e.g., values with custom destructors cannot be used). Furthermore, only side-effect-free
functions can be called from secure blocks.

Secure blocks can make calls to Rust Standard Library functions that have been “allowlisted” by
the Carapace implementation. A production-ready implementation of Carapace should allowlist as
many Rust Standard Library functions as possible. To call a third-party library function, application
developers have two options. They can extend the library function to use Carapace. Alternatively,
developers can choose to trust the function, by declassifying/endorsing data sent to the function
(if called outside of a secure block) or by using a special trusted operation provided for calling
ordinary functions from side-effect-free contexts (if called inside of a secure block).
Future work can address these limitations by introducing static analysis that analyzes Rust

Standard Library and third-party library functions to ensure they are side effect free.

4.7 Programming Model Examples
The following examples show application code that could be part of a gradebook application.
Suppose there are multiple students known only at run time, but statically only one teacher, so
the students’ tags are represented dynamically, while the teacher’s tags are represented statically.

4Otherwise, an untrusted macro could transform the SecureValue-creating expression.
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type TeacherSec = StatSecLabel::A;
type TeacherPub = StatSecLabel::Empty;
type TeacherEndorsed = StatIntLabel::All;

Fig. 4. Type aliases (for static label types from Fig. 2a and Fig. 2b) used in Figs. 5–7.

Our examples use non-default labels for static secrecy, dynamic secrecy, and dynamic integrity—
but default labels for static integrity, since the only source of untrusted data is from students.
Fig. 4 shows intuitively named type aliases for static labels used by the examples in this section.
Throughout the example executions in this section, there are two students at run time, Alice and
Bob, who have dynamic secrecy tags asec and bsec , respectively. Low-integrity data produced by
Alice and Bob is represented by dynamic integrity tags aint and bint , respectively.

Adding a bonus to a grade. Fig. 5a shows a function containing a secure block. The function’s
parameters are secure values: a grade and a bonus to be added to the grade. The type of each secure
value is a 32-bit integer (i32). The static secrecy label of grade is GradeSec, which is a type parameter
of the function, allowing the function to support grades with different static secrecy labels. The
other static labels of grade and bonus are fixed types defined in Fig. 4. The block’s code unwraps
grade mutably and bonus immutably, and adds the bonus to the grade.
Figs. 5b and 5c show scenarios involving different static secrecy labels of grade. In Fig. 5b’s

scenario, grade’s 𝑆 stval is TeacherSec (StatSecLabel::A), meaning that the grade is secret to the teacher.
The secure block blk compiles successfully because grade’s 𝑆 stval = 𝑆 stblk and bonus’s 𝑆 stval ⊆ 𝑆 stblk . At run
time, the unwrap calls succeed because grade’s 𝑆dynval = 𝑆

dyn
blk and bonus’s 𝑆dynval ⊆ 𝑆

dyn
blk .

In contrast, Fig. 5c supposes that grade’s 𝑆 stval is TeacherPub (StatSecLabel::Empty), meaning that the
grade is public. However, the bonus is not public: bonus’s 𝑆 stval is TeacherSec (StatSecLabel::A), so the
type constraint on unwrap_ref(bonus) fails since 𝑆 stval ⊈ 𝑆 stblk , generating a compiler error.

Declassifying or endorsing a grade. Fig. 6 shows code that uses a trusted secure block that declassifies
and/or endorses grade’s value depending on the values of static labels GradeSec and OutSec and
dynamic labels out_sec and out_int, returning the grade as a new value with the block’s labels.
Figs. 6b and 6c show two run-time scenarios. In Fig. 6b, the teacher is the principal 𝑃 and

has capabilities to remove Alice’s and Bob’s dynamic secrecy tags ({a−sec, b−sec}). This scenario
supposes that grade is Alice’s grade, so it is labeled with the secrecy labels of Alice ({asec}) and
the teacher (TeacherSec). The declassification successfully produces a new value with static secrecy
label TeacherPub because principals have capabilities for all static tags (§4.2).
In Fig. 6c, the teacher is the principal 𝑃 and has capabilities to add Alice’s and Bob’s integrity

tags ({a+int, b+int}). In this scenario, the proposed new grade is already readable by Alice (it has static
secrecy label TeacherPub). The proposed grade comes from Alice, so its integrity label 𝐼 dynval lacks aint .
Since out_int includes aint but grade’s 𝐼 dynval does not, the block returns the grade value endorsed
with the aint tag, which succeeds because a+int ∈ 𝐶blk .

Computing and declassifying an average of grades. Fig. 7 shows a secure block that computes the
average of a vector of grades, which a trusted secure block then declassifies. The code is comparable
to Fig. 1’s insecure code.
The code assumes that the grades have been endorsed by the teacher (each grade’s 𝐼 stval is

TeacherEndorsed), and the teacher has released all or no grades (the type parameter GradeSec may
be TeacherSec or TeacherPub). Because static labels are represented as static types, all grades in the
vector must have the same static labels, which is a limitation of static labels.
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pub fn add_bonus_to_grade<GradeSec: StatSecLabelType>(
grade: &mut SecureValue<i32, GradeSec, TeacherEndorsed>,
bonus: &SecureValue<i32, TeacherSec, TeacherEndorsed>) {

untrusted_secure_block!(GradeSec, TeacherEndorsed, // static labels
grade.get_dyn_sec_label(), grade.get_dyn_int_label(), { // dyn. labels

*unwrap_mut_ref(grade) += *unwrap_ref(bonus);
});

}

(a) The function takes parameters that are SecureValue instances, which it operates on using a secure block.

Because grade is unwrapped mutably, allowing both read and write access, its labels must match the block’s.

GradeSec ≔ TeacherSec

𝐶blk ≔ {a−sec, b−sec, a+int , b
+
int }

Block labels: 𝑆dynblk ≔ {asec}, 𝐼dynblk ≔ U
dyn
𝑃

Value 𝑆
dyn
val 𝐼

dyn
val

grade {asec} U
dyn
𝑃

bonus {} U
dyn
𝑃

(b) Scenario: Teacher adds unreleased bonus to stu-

dent Alice’s unreleased grade.

GradeSec ≔ TeacherPub

Won’t compile: unwrap_ref (bonus) requires
bonus’s 𝑆stval ⊆ 𝑆stblk , but bonus’s 𝑆

st
val is TeacherSec

(StatSecLabel::A), while 𝑆stblk is TeacherPub

(StatSecLabel::Empty).

(c) Scenario: Teacher adds unreleased bonus to stu-

dent Alice’s already-released grade.

Fig. 5. Example application code demonstrating Carapace’s programming model. Parts (b) and (c) each show

a usage scenario, GradeSec’s concrete type, and run-time behavior. In (b), 𝐶blk is the block’s capabilities, and

𝑆
dyn
blk and 𝐼

dyn
blk are the block labels. The table shows the dynamic labels of grade and bonus. In (c), there is no

run-time behavior since static type checking fails.

The block’s dynamic labels, blk_sec and blk_int, must be the join of all grades’ dynamic secrecy
and integrity labels, respectively. We assume that, for efficiency, blk_sec and blk_int are computed
just once and passed to the function on each call. (Alternatively, the function could compute blk_sec

and blk_int by joining the grades’ dynamic secrecy and integrity labels, respectively.)
Figs. 7b and 7c show two scenarios. In both scenarios, the vector contains the grades for two

students, Alice and Bob. The difference between the scenarios lies in who the principal is: In Fig. 7b,
the principal is the teacher; in Fig. 7c, the principal is Alice. In both scenarios, the (untrusted)
secure block successfully computes the average, which has dynamic secrecy label {asec, bsec}. In
Fig. 7b, the trusted secure block succeeds because the teacher has the capabilities to remove all of
the dynamic secrecy label’s tags. In contrast, in Fig. 7c the trusted secure block triggers a run-time
error because Alice does not have the capabilities to remove Bob’s dynamic secrecy tags.

5 How Carapace Ensures Noninterference
5.1 How Carapace Represents Labels and Secure Values
Static labels. §4.5 and Figs. 2a and 2b show how Carapace represents static labels using static
types. To ensure that the application obeys static IFC rules, Carapace extends prior work Cocoon’s
approach [35], using type constraints so that the application will not compile unless static secrecy
and integrity IFC rules are obeyed.

Dynamic labels. Carapace represents dynamic labels, which are run-time sets of tags, using the
types DynSecLabel and DynIntLabel (§4.2). While DynSecLabel stores the label’s tags, DynIntLabel stores
the tags that are not part of the label. This behavior makes sense because of how integrity works:
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pub fn declassify_and_or_endorse_grade<GradeSec: StatSecLabelType, OutSec: StatSecLabelType>(
grade: &SecureValue<i32, GradeSec, TeacherEndorsed>,
out_sec: DynSecLabel, out_int: DynIntLabel

) -> SecureValue<i32, OutSec, TeacherEndorsed> {
trusted_secure_block!(GradeSec, TeacherEndorsed, // blk static labels

grade.get_dyn_sec_label(), grade.get_dyn_int_label(), // blk dyn. labels
OutSec, TeacherEndorsed, // output static labels
out_sec, out_int, { // output dyn. labels

wrap(*unwrap_ref(grade))
})

}

(a) The function uses a trusted secure block to declassify and/or endorse a grade value.

GradeSec ≔ TeacherSec

OutSec ≔ TeacherPub

𝐶blk = {a−sec, b−sec, a+int, b+int}
grade: 𝑆dynval = {asec}, 𝐼 dynval = U

dyn
𝑃

𝑆
dyn
blk = { asec }, 𝐼 dynblk = U

dyn
𝑃

out_sec = {asec}, out_int = Udyn
𝑃

Return value: 𝑆dynval = {asec}, 𝐼 dynval = U
dyn
𝑃

(b) Scenario: Teacher releases student Alice’s grade.

GradeSec ≔ TeacherPub

OutSec ≔ TeacherPub

𝐶blk = {a−sec, b−sec, a+int, b+int}
grade: 𝑆dynval = {asec}, 𝐼 dynval = U

dyn
𝑃
\ {aint}

𝑆
dyn
blk = { asec }, 𝐼 dynblk = U

dyn
𝑃
\ {aint}

out_sec = {asec}, out_int = Udyn
𝑃

Return value: 𝑆dynval = {asec}, 𝐼 dynval = U
dyn
𝑃

(c) Scenario: Teacher endorses student Alice’s pro-

posed new grade.

Fig. 6. Example application code demonstrating declassification and endorsement. Parts (b) and (c) each

show a usage scenario. Each scenario first presents the concrete types of generics GradeSec and OutSec. Then

each part shows run-time behavior: the block’s capabilities (𝐶blk), grade’s labels, the block’s labels (𝑆
dyn
blk and

𝐼
dyn
blk ), the run-time values of parameters out_sec and out_int, and the return value’s labels.

the default dynamic integrity label is Udyn
𝑃

, the set of all dynamic integrity tags in the process’s
capability set (§4.2); that label is represented by a DynIntLabel containing no tags. Thus intersection
of DynIntLabel instances is implemented as union, while superset is implemented as subset.

The implementation supports dynamic labels with any number of tags, thus avoiding label creep.
To optimize time and space for the case in which dynamic labels are small (i.e., few tags), the size
of a DynSecLabel/DynIntLabel instance is just one 64-bit word, which represents either a few tags
directly or many tags via indirection. For a DynSecLabel/DynIntLabel representing a label with 0–2
tags, the tag(s) are stored directly in the 64-bit word: Each DynSecTag/DynIntTag is 31 bits, and the
lowest bit of the word is set to 1 to indicate that the representation stores tag(s) directly.

The implementation represents a DynSecLabelwith >2 tags as an Arc<HashSet<DynSecTag>> (similarly
for DynIntLabel and DynIntTag) indexed by tags’ unique IDs. The HashSet implementation (from
the Rust Standard Library) uses an array of buckets and handles collisions by mapping each
bucket to an automatically resizing list of values. By implementing large labels in this way, the
Arc<HashSet<DynSecTag>> is equivalent to a pointer to a reference-counted HashSet. The word’s lowest
bit is 0 because the pointer’s value is word-aligned, differentiating the two representations.

Dynamic labels in secure values. Figs. 2d and 2e implied that Carapace maintains dynamic labels
for every SecureValue instance. This would add unnecessary space and time overheads for values
that have statically known default dynamic labels. To avoid these costs, Carapace supports secure
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pub fn compute_and_declassify_average<GradeSec: StatSecLabelType>(
student_grade_vec: &Vec<SecureValue<i32, GradeSec, TeacherEndorsed>>,
blk_sec: DynSecLabel, blk_int: DynIntLabel,
out_sec: DynSecLabel

) -> SecureValue<i32, TeacherPub, TeacherEndorsed> {
let classified_average = untrusted_secure_block!(GradeSec, TeacherEndorsed, // static labels

blk_sec, blk_int, { // dynamic labels
let mut total = 0;
for secure_grade in student_grade_vec {

total += unwrap(secure_grade);
}
wrap(total / student_grade_vec.len() as i32)

});
trusted_secure_block!(GradeSec, TeacherEndorsed, blk_sec, blk_int, // block labels

TeacherPub, TeacherEndorsed, out_sec, blk_int, { // output labels
wrap(unwrap(classified_average))

})
}
...
let grades: Vec<SecureValue<i32, TeacherPub, TeacherEndorsed>> = ...; /* read from data store */
let declassified_avg: SecureValue<i32, TeacherPub, TeacherEndorsed> =

compute_and_declassify_average(&grades, grades_dyn_sec, grades_dyn_int, DynSecLabel::empty());
... declassified_avg ... /* write student-visible grade average to data store */

(a) This code uses a secure block to compute the average grade of a set of grades, followed by a trusted secure

block to declassify the average. The code outside of compute_and_declassify_average shows how the function

could be called (and it corresponds to Fig. 1).

GradeSec ≔ TeacherPub

𝐶blk ≔ {a−sec, b−sec, a+int, b+int}
Value 𝑆

dyn
val 𝐼

dyn
val

student_grade_vec[0] {asec} Udyn
𝑃

student_grade_vec[1] {bsec} Udyn
𝑃

out_sec = {}
blk_sec = {asec, bsec}, blk_int = Udyn

𝑃

blk_sec \ out_sec = {asec, bsec} ⊆ {𝑡 | 𝑡− ∈ 𝐶blk}
out_int \ blk_int = {} ⊆ {𝑡 | 𝑡+ ∈ 𝐶blk}
(b) Scenario: Teacher successfully computes and re-

leases the average of Alice and Bob’s grades.

GradeSec ≔ TeacherPub

𝐶blk ≔ {a−sec, b−sec, a+int, b+int}
Value 𝑆

dyn
val 𝐼

dyn
val

student_grade_vec[0] {asec} Udyn
𝑃

student_grade_vec[1] {bsec} Udyn
𝑃

out_sec = {}
blk_sec = {asec, bsec}, blk_int = Udyn

𝑃

blk_sec \ out_sec = {asec, bsec} ⊈ {𝑡 | 𝑡− ∈ 𝐶blk},
so a run-time failure occurs!
(c) Scenario: Alice is not allowed to compute and

release the average of her and Bob’s grades.

Fig. 7. Example code demonstrating a sequential pair of blocks allowing declassification/endorsement of

information after computation. Parts (b) and (c) each show a usage scenario, first showing the type of generic

GradeSec. Then each part shows run-time behavior: the block’s capabilities (𝐶blk); the labels of student grades;

and the block’s labels, which come from parameters blk_sec, blk_int, and out_sec.

values that statically have default dynamic secrecy and/or integrity labels, implementing secure
values as follows (effectively extending Fig. 2d with two type parameters):
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Algorithm 1 Dynamic IFC operations performed by a secure block 𝑃 with dynamic labels 𝑆dynP and
𝐼
dyn
P and (for trusted secure blocks only) output dynamic labels 𝑆dynout and 𝐼 dynout .
1: At beginning of block:
2: if 𝑃 is trusted secure block then
3: check (𝑆dynP \ 𝑆dynout ) ⊆ {𝑡 | 𝑡− ∈ 𝐶

dyn
𝑃
} ∧ (𝐼 dynout \ 𝐼

dyn
P ) ⊆ {𝑡 | 𝑡

+ ∈ 𝐶dyn
𝑃
}

4: else
5: 𝑆

dyn
out ≔ 𝑆

dyn
P ⊲ Set output secrecy to block’s secrecy

6: 𝐼
dyn
out ≔ 𝐼

dyn
P ⊲ Set output integrity to block’s integrity

7: At unwrap (v) or unwrap_ref (v) :
8: check 𝑆

dyn
v ⊆ 𝑆

dyn
P ∧ 𝐼 dynP ⊆ 𝐼

dyn
v

9: At unwrap_mut_ref (v) :
10: check 𝑆

dyn
v = 𝑆

dyn
P ∧ 𝐼 dynP = 𝐼

dyn
v

11: At wrap (v) :
12: Evaluate to new SecureValue with value v and dynamic labels 𝑆dynout and 𝐼 dynout

13: At end of block with return value v:
14: check 𝑆

dyn
v = 𝑆

dyn
out ∧ 𝐼

dyn
v = 𝐼

dyn
out

struct SecureValue<T: SecureValueSafe, 𝑆 stv : StatSecLabelType, 𝐼 stv : StatIntLabelType,
DynSecLabelType: DynSecLabelOrDefault, DynIntLabelType: DynIntLabelOrDefault> {

value: T, 𝑆
dyn
v : DynSecLabelType, 𝐼

dyn
v : DynIntLabelType,

}

where DynSecLabelOrDefault is a trait implemented by two types: DynSecLabel and the empty type ()

(similarly for DynIntLabelOrDefault). For example, the type SecureValue<T, 𝑆 stv , 𝐼 stv , DynSecLabel, ()>

represents a secure value that can have any dynamic secrecy label but that statically has the default
dynamic integrity label.

5.2 How Carapace Handles Explicit Flows
Here we describe how Carapace enforces §4.5’s rules for accesses to secure values in secure blocks.

Static IFC. Carapace enforces static IFC rules using static type constraints, e.g., using the Lower-
IntegrityThan<DynIntLabel> trait described above. Prior work Cocoon already uses this approach for
static secrecy checks [35], and Carapace adds similar support for static integrity checks.

Dynamic IFC. Algorithm 1 shows the dynamic analysis performed by Carapace on operations in
secure blocks. As line 3 shows, the analysis checks at the beginning of a trusted secure block that
the principal has the capabilities to perform the specified declassification and/or endorsement (the
same check as in §4.4). At the beginning of an untrusted secure block, the analysis initializes 𝑆dynout

to 𝑆
dyn
P and 𝐼

dyn
out to 𝐼

dyn
P (lines 5 and 6), since the block has the same output labels as the block’s

labels, allowing the rest of the analysis to use 𝑆dynout and 𝐼 dynout regardless of block type.
At unwrap operations, the analysis performs checks that the accessed values’ labels are compatible

with the block’s labels (lines 7–10). These checks correspond to the dynamic checks in Fig. 3b.
The rest of the algorithm shows the analysis for wrap calls and the block’s return value, which

ensures that every outputted value has the same labels as the block’s output labels (𝑆dynout and 𝐼 dynout ).
If a check operation fails at run time, it generates a panic (which does not create a high-

bandwidth covert channel because of how Carapace handles panics; §5.3). Carapace implements
Algorithm 1’s dynamic analysis by implementing untrusted_secure_block! and trusted_secure_block!

as Rust procedural macros, which can perform arbitrary compile-time syntax transformations.
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let x = ??; // x is secret
let mut y = true; // y is public
let mut z = true; // z is public
if x {

y = false;
}
if y {

z = false;
}
return z;

(a)

let x: SecureValue<bool, ...> = /* SecureValue<...>(??, ...) */
let mut y: SecureValue<bool, ...> = /* SecureValue<...>(true, ...) */
let mut z: SecureValue<bool, ...> = /* SecureValue<...>(true, ...) */
secure_block!(..., {

if unwrap(x) { *unwrap_mut_ref(&mut y) = false; }
});
secure_block!(..., {

if unwrap(y) { *unwrap_mut_ref(&mut z) = false; }
});
return z;

(b)

Fig. 8. (a) Implicit flow example adapted from prior work [6]. (b) Carapace handles implicit flows using

lexically scoped secure blocks with uniform labels.

Restricting accesses outside of secure blocks. Carapace ensures that code cannot read or write secure
values outside of secure blocks, by making SecureValue’s data field private and providing access
methods that are unsafe. The only way to access the data field (without using explicitly unsafe code,
forgoing Carapace’s guarantees) is to use unwrap operations inside of a secure block (Fig. 3b). The
untrusted_secure_block! and trusted_secure_block! procedural macros expand unwrap operations to
use unsafe blocks. Carapace reuses this functionality from prior work Cocoon [35].

5.3 How Carapace Handles Implicit Flows
Information flow can be either explicit or implicit. An explicit flow involves only data dependence,
while an implicit flow includes control dependence [32]. As an example, consider Fig. 8a, adapted
from Austin and Flanagan’s paper on dynamic IFC for JavaScript [6]. Austin and Flanagan’s and
other work, particularly on IFC for JavaScript programs, must account for both direct and indirect
implicit flows from x to y to z [5, 6, 12, 13, 15, 20, 24, 51, 54].
Carapace prohibits illegal implicit flows by using lexically scoped blocks with labels that are

uniform throughout the block’s code. Prior work Cocoon [35] and Laminar [47, 49] prohibit illegal
implicit flows in a similar way. By requiring every secure value to be accessed in a lexically scoped,
single-exit block (i.e., a secure block), illegal implicit flows are rendered infeasible. In Fig. 8a, since
x is secret, Carapace requires if x { y = false; } and if y { z = false; } to each be wholly in a
secure block (the two could optionally be combined into one block). This forces y and z to be secure
values—otherwise the program cannot compile. The resulting code resembles Fig. 8b.

To ensure no illegal implicit flows occur between secure blocks and their surrounding code,
secure blocks must have a single control-flow exit. Consider a loop containing a secure block that
breaks out of the loop depending on a secure value, which may violate noninterference. Secure
blocks cannot exit via return or break because Carapace wraps a secure block’s body in a closure.

Handling exceptional control flow. What about implicit flows created by exceptional control flow?
A secure block might panic due to a dynamic label check failure or for another reason, e.g., if the
block calls a Rust Standard Library function that panics. Rust’s default behavior for a panic is to
terminate the application, which satisfies termination-insensitive noninterference (§4.1). However,
application code might catch a secure block’s panic, creating a high-bandwidth covert channel.

Askarov and Sabelfeld address this issue with type restrictions on effects that could occur after
any operation that might generate an exception [4]. Laminar addresses the issue by requiring all
secure blocks to catch exceptions explicitly [49]. Similarly, in Cocoon every secure block catches any
panics automatically and evaluates to a default value [35]. However, this behavior is still problematic
because the application can set a noninterference-violating “panic hook” that executes on any panic.
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A possible solution is for every secure block to set an empty panic hook when it starts and restore
the old panic hook when it ends, but we found that this approach adds noticeable run-time overhead
for frequently executed secure blocks. Instead, Carapace calls std::panic::always_abort() when
the application starts, which ensures that any panic exits the program without calling the panic
hook. Note that Carapace only terminates silently on panic when compiled in release mode. When
compiled in debug mode, Carapace uses the default panic hook behavior for better debuggability.

5.4 Preventing Side Effects in Secure Blocks
So far we have described how Carapace ensures that accesses to secure values do not violate IFC
rules. However, preventing illegal explicit and implicit flows requires additional restrictions to
ensure that accesses to ordinary values do not violate noninterference. Carapace reuses prior work
Cocoon’s approach for disallowing side effects [35]. In the following, we discuss three kinds of
potential side effects that Carapace disallows in secure blocks.

Side effects via mutation. What if a secure block writes to an unwrapped (and thus low-secrecy)
value whose scope is larger than the block? Carapace (and Cocoon) use a closure for the block’s
code and disallow the closure from capturing mutable references except for mutable references to
SecureValue values. This constraint is enforced using Rust auto traits and negative implementations.

Side effects in callees. What if a secure block performs I/O to leak a secret, e.g., to write a high-secrecy
value to an untrusted socket? Carapace (and Cocoon) ensure that secure blocks can transitively call
only side-effect-free functions. Every call in a secure block or side-effect-free function is transformed
by the untrusted_secure_block! and trusted_secure_block! macros so that it can compile only if the
callee is either (1) a Rust Standard Library function that has been manually “allowlisted” as side
effect free by Carapace or (2) an application function that has been annotated as side effect free
using the #[side_effect_free_attr] attribute macro. In Cocoon, a consequence of these limitations
was that every method call had to be fully qualified, e.g., ::std::vec::Vec::len(student_grade_vec),
increasing code complexity [35]. In contrast, Carapace adds support for simple (i.e., unqualified)
method calls in secure blocks, so programmers can simply write student_grade_vec.len(), as in Fig. 7.

Invisible side effects. Even with the above restrictions, there are a few kinds of side effects that
Carapace’s procedural macros cannot detect because they are not visible at the level of syntax:
overloaded operators, custom dereference operations, and custom destructor calls. Carapace (and
Cocoon) use their procedural macros to transform every expression in secure blocks and side-effect-
free functions so it cannot compile if it uses overloaded operators or uses a type that implements a
custom dereference operation or custom destructor. Specifically, types can implement a Carapace-
provided trait called InvisibleSideEffectFree only if they do not implement syntactically invisible
operations; Carapace implements InvisibleSideEffectFree for a wide variety of Rust library types.
An application can mark an application-defined type with the #[derive(InvisibleSideEffectFree)]

macro, which ensures that the type (transitively) does not provide syntactically invisible operations.

5.5 Implementation Details
Our implementation of Carapace extends the publicly available Cocoon implementation [35, 36].
Carapace is a Rust library; it is implemented as two Rust crates since procedural macros must go
in their own crate. Carapace requires the nightly version of Rust in order to use a few unstable
features including auto traits and negative trait implementations. The evaluation uses version
1.69.0-nightly of the Rust compiler.
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Table 2. Microbenchmark results. Run times have three significant digits and 95% confidence intervals.

Statistics Run times
Benchmark Secure blocks (trusted) Label comps. Original W/Carapace Slowdown
add_bonus 10,000,000 (0) 20,000,000 12,800± 225 𝜇s 15,600± 315 𝜇s 1.22×
average 10,030,000 (10,000) 40,080,000 2,120± 36.9 𝜇s 606,000± 4,470 𝜇s 286×

6 Evaluation Overview
We evaluated the effectiveness and performance of Carapace using microbenchmarks and real
applications. § 7 describes evaluation using microbenchmarks based on the paper’s gradebook
examples. § 8–§ 10 describe how we extended three applications with comprehensive security
policies and evaluated the resulting effectiveness and performance.

All experiments ran on a MacBook Pro laptop with a quad-core Intel Core i7-7920HQ at 3.1 GHz
with 16 GB of RAM, running macOS 12.7.6.

7 Microbenchmarks Evaluation
To evaluate the behavior and performance of Carapace in isolation, we implemented two mi-
crobenchmarks, called add_bonus and average, based on the paper’s running examples. The
add_bonus benchmark adds values to grades by calling add_bonus_to_grade from Fig. 5a on students’
grades. The average benchmark computes the average of all grades and declassifies the average, by
calling compute_and_declassify_average from Fig. 7a.

For each benchmark, we created both non-Carapace and Carapace versions. Each benchmark
manages a gradebook of 1,000 student grades. The gradebook is a vector (Vec) of student records,
which each consist of a student name (string) and a numerical grade (32-bit integer). In the Carapace
versions, each grade is wrapped in a SecureValue with a dynamic secrecy label with a single tag
unique to the student and a dynamic integrity label with a single tag unique to the student.

To factor out noise and one-time costs (e.g., compulsory cache misses), the add_bonus benchmark
executes add_bonus_to_grade 10,000,000 times. To prevent the compiler from applying vectorization
optimizations that we thinkwould not apply inmost real-world gradebook scenarios, the benchmark
iterates over the grades by calling add_bonus_to_grade on every 17th grade (mod 1,000) in the vector.
The average microbenchmark executes the compute_and_declassify_average function 10,000 times.

To get the run time of each benchmark, we measured the wall-clock time of only its outer
loop, and ran 100 trials for each benchmark to account for run-to-run variation. We compiled the
code with rustc using release mode with link-time optimization (LTO), which enables cross-crate
optimization and inlining. To collect statistics such as number of label comparisons, we used
separate executions compiled with support for incrementing statistics counters.

Table 2 shows the run times of the microbenchmarks without and with Carapace. As the results
show, Carapace adds moderate run-time overhead to add_bonus, despite its heavy use of secure
blocks and label comparisons. We determined that the benchmark’s 22% run-time overhead is
attributable to its 20,000,000 label comparisons, which check whether the grade’s labels are equal
to the block’s labels, which are executed as part of unwrap_mut_ref(grade) in Fig. 5a. Each equality
check takes a fast path: It checks the lowest bit of one of the 64-bit values, which is always set
(each label contains only one tag), so it performs a simple comparison of two 64-bit values. Note
that unwrap_ref(bonus) adds no run-time overhead since no dynamic checks are required: bonus has
statically default dynamic labels in our implementation of add_bonus.

In contrast to add_bonus, average represents a worst case for Carapace performance. The read
of each grade value by unwrap(secure_grade) in Fig. 7a requires two checks (one for secrecy and
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one for integrity) that the grade’s label (which contains a single tag) is a subset of the block’s
label, which contains 1,000 tags and is represented by a HashSet. These HashSet lookups account for
the majority of the 286× slowdown reported in Table 2. In addition, a nontrivial fraction of the
slowdown comes from the trusted secure block in Fig. 7a, even though it is outside the inner loop,
since it performs expensive subset operations to check that the process’s capabilities are sufficient
to execute the block and that classified_average’s labels are subsets of the block’s labels. These
checks are expensive: Each check compares two labels that each have 1,000 tags.

8 Case Study: Avail
We retrofitted Avail, an open-source Rust application that computes available times across multiple
calendars [2], to use Carapace. Avail accesses user-specified Google and Outlook calendars and
returns times that are available across all calendars.
We used Carapace to enforce a secrecy policy that each calendar is secret to its owner. Each

calendar 𝑐 is assigned a unique secrecy tag csec , and thus 𝑐 events have secrecy label {csec}. Since
the calendars and their number are unknown at compile time, the tags and labels are dynamic.

8.1 Modifications to Avail to Implement the IFC Policy
Avail’s primary computation calculates the available times across multiple calendars. We modified
this computation to operate on SecureValue-wrapped calendars with dynamic secrecy labels. We
modified Avail’s handling of responses from calendar servers to wrap each calendar 𝑐’s collection
of events in a SecureValue with a dynamic label {csec}.
Avail relies heavily on a third-party Rust library called Chrono [19]. In general, application

developers have two choices for a third-party library used by retrofitted code: Retrofit the library to
use Carapace; or choose to trust the library, by declassifying/endorsing data sent to the library. We
chose the former option because Avail relies so heavily on Chrono. As a result, we retrofitted both
Avail and Chrono to use Carapace. Retrofitting Chrono involved marking its functions and types
as side effect free, and refactoring to account for Carapace’s restrictions on code in side-effect-free
contexts, so Chrono’s functions and types could be used in Avail’s secure blocks. We chose to audit
and trust certain uses of overloaded operators (which are disallowed in side-effect-free contexts;
§5.4) in Chrono, by using a special trusted operation that provided by Carapace.

After collecting all events from the calendar servers, Avail groups them by date. Then it iterates
over each day; for each day, it creates a vector representing the day’s available times. The code
iterates over each event in the day, adding an available time slot to the aforementioned vector
whenever there is a gap between consecutive events. We initially tried wrapping the above code in
multiple disjoint secure blocks, but Carapace did not allow it to compile due to noninterference
errors. This process helped us realize that, to avoid certain illegal implicit flows, the entire compu-
tation on calendar events should be wrapped in a single secure block. So we wrapped the entire
computation in a secure block, the end result of which is a vector of available times. Following this
long secure block, we added a short trusted secure block to declassify this vector of available times.

8.2 Evaluation
To enforce the IFC policy described above, we added 313 lines and removed 165 lines of code
from Avail. These changes affected 8 files. As part of these changes, we converted code to use
SecureValue-wrapped types and secure blocks. In total we added 9 untrusted secure blocks.
To retrofit Chrono, we added 122 lines and removed 44 lines of code from the Chrono crate.

These changes, which affected 17 files, consist entirely of marking types and functions as side effect
free so they can be used in Avail’s secure blocks.
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Table 3. Run-time results for Avail. Run times are reported with 95% confidence intervals.

Statistics Run times
Secure blocks (trusted) Label comps. Unwraps Original W/Carapace

10 (1) 27 19 310 ± 2 ms 310 ± 2 ms

Trusted secure blocks are a measure of how much code must be audited and trusted. In total our
modifications include adding 1 trusted secure block to Avail, totaling 2 lines of code. This block is
used to declassify the vector of available times computed by Avail.

To evaluate the performance effect of our changes, we compared the performance of unmodified
Avail with the Carapace version of Avail. For each version of Avail, we measured the time to
compute the shared availability between two different calendars (excluding the nontrivial time
Avail spends on I/O). We ran 2,000 trials of each version of Avail.5

The right half of Table 3 shows the performance results. We did not detect any run-time overhead
added by the Carapace version; with high confidence, the overhead is negligible (<1%).

The left half of Table 3 shows how many Carapace operations were performed by the Carapace
version of Avail in the performance experiment (based on a separate, statistics-gathering run).
The table reports counts of secure blocks executed, label comparisons, and unwrap operations.
While these counts are small, we note that a significant fraction of Carapace-retrofitted Avail’s
computation happens in secure blocks on (unwrapped) secret data.

9 Case Study: Mk48.io
To evaluate the use of Carapace to support real-world integrity policies, we modified a real-world
Rust application, the Mk48.io online multiplayer game [57], to use Carapace to enforce a dynamic
integrity policy. Mk48.io is a web-based multiplayer 2D video game written mainly in Rust. In the
game, each client controls a ship and attempts to shoot ships and upgrade their own ship.

MK48.io consists of two parts: (1) a client-side Rust program compiled to WebAssembly hosted
on a local web browser and run by the player and (2) a server-side Rust program compiled to
native code that manages the game map and communicating data between players. A client sends
messages to the server consisting of orders to move a ship, fire weapons, or upgrade a ship. The
server integrates these instructions into the game map and notifies other clients of these changes.
The server maintains the state of the game, such as the position and heading of each ship. A

message from one client should only be able to affect the game state for the client ship, not for any
other ship—which is an integrity policy. A violation of this policy would compromise the quality
of the game. We use Carapace to enforce this policy by modifying the server program to treat
incoming data from clients as low integrity. (All other data has default, or highest, integrity.) The
implemented policy allows client data to impact server data by using an explicit endorse operation.

We modified Mk48.io’s server program so that each client 𝑐 is assigned a unique integrity tag tc .
Since the clients and the number of them are unknown at compile time, this tag is dynamic. Upon
receiving a message from a client, the message’s content is labeled with Udyn

𝑃
\ {tc}, signifying that

it comes from untrusted source 𝑐 . Because trusted server data have the default label of Udyn
𝑃

, the
untrusted client message is unable to affect server data without an explicit endorse operation.

5For both versions, around 0.2% of trials had very long run times (at least one second). Since these outliers are unrelated to
our changes, we removed them from the results to avoid having much larger confidence intervals.
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9.1 Modifications to Mk48.io to Implement the IFC Policy
We modified three sections of the Mk48.io codebase to use Carapace: (1) server-side client repre-
sentation; (2) initial processing of client messages by the server; and (3) applying client messages
to the world state.6

Server-side client representation. Each client is associated with a ClientTuple struct on the server,
which uses the struct to identify which client sent a message. To provide each client with a unique
tag for the server to use, we modified the ClientTuple struct to contain a dynamic integrity tag. Each
tag is initialized along with the ClientTuple, and is uniquely associated with a single client.

Initial processing of client messages by the server. Messages are passed from client to server though
a Command enum, which has variants for moving a ship, upgrading a ship, or creating a ship. When
the server receives a Command, it calls a dynamically dispatched method to downcast it to the correct
variant. The server then calls a function to apply the Command’s changes to the world state.

We modified the code the server uses to receive a Command, so that the first thing the server does
with the Command is wrap it in a SecureValue, marked with the sending client’s integrity tag. This marks
the Command as low integrity, and guarantees that without an explicit endorsement, the untrusted
client data cannot affect the server’s world state. Additionally, because the Carapace prototype
does not support dynamically dispatched methods in side-effect-free contexts, we refactored the
code so it passes the Command through a match block to determine which enum variant it is. In each
match case, the code calls the appropriate handler function as described next.

Applying client messages to the world state. The relevant handler function applies the changes from
the Command to the world state. At each point where the world state is changed, we modified the code
to use two secure blocks: (1) an untrusted block to compute the (still-low-integrity) modified data
and (2) a trusted block to endorse the data and change the world state. Endorsement is necessary
because the world state, representing the server’s view of the game, has highest (default) integrity.

9.2 Evaluation
To enforce the IFC policy described above, we added 924 lines and removed 72 lines of code
from Mk48.io’s code base, affecting 16 files. As part of these changes, we converted code to use
SecureValue-wrapped types and secure blocks, including 15 untrusted secure blocks.
We used 14 trusted secure blocks in Mk48.io, totaling 67 lines of code. Of these, one block

identifies which variant a Command enum is—a reasonable endorsement that avoids us having to move
a lot more logic into secure blocks. The other 13 trusted secure blocks endorse (low-integrity) client
updates so they can be applied to (high-integrity) world state.

We did not do a quantitative performance evaluation since Mk48.io is an interactive game. We did
test the experience of playing the game with multiple clients, both without and with Carapace. We
perceived that the two versions behaved the same, with no change in functionality or performance.

10 Case Study: Servo
We retrofitted a large Rust application, the Servo web rendering engine [38], to use Carapace.

Servo background and IFC policy. Servo is a web rendering engine written primarily in Rust [38].
It is an open-source project initially developed by Mozilla starting in 2011. Servo is one of the 20
most popular Rust projects on GitHub, with over 20,000 “stars.” It is a complex application, having
over 1.15 million lines of Rust source code. We applied our changes to commit d79876 of Servo.
6Mk48.io relies on an older version of Rust than the oldest version Carapace can use. The Mk48.io evaluation thus uses an
older version of Rust, 1.65.0-nightly, and a modified version of Carapace compatible with the older version of Rust.
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First we describe the fine-grained security policy that we modified Servo to enforce using
Carapace. The OS gives the Servo application process privileges to read data from web servers,
write data to web servers, and receive input (e.g., keyboard input) from the user. However, we want
to ensure that data entered into a page generated by one domain cannot leak to other domains. For
example, credit card data (or data derived from it) entered into a form generated by https://icrc.org

should not be allowed to be sent to another server such as https://evil.com. This confidentiality
policy is comprehensive and helps avoid leaks of confidential data. (To be clear, this policy is not
part of current Web standards and is violated by some existing benign web pages.)
Our target security policy generally considers user input to be secret, but it considers a few

attributes of the input to be non-secret. First, the policy considers the length of input into a text box
(i.e., the number of characters and the number of lines of text) to be non-secret. Second, the policy
does not consider whether a key press is a “special” key (e.g., the Alt key) to be secret. Allowing
these exceptions to the policy seems reasonable—we do not expect the “leaked” information to be
harmful—and avoids a lot of additional propagation of secret values.
We achieve the target security policy using the following fine-grained IFC policy. Each web

server’s domain is assigned a unique secrecy tag. Since the domains and their number are unknown
at compile time, the secrecy tag is dynamic. Let the dynamic secrecy tag for https://icrc.org be
icrcsec . If the user enters data into a web form, the data has a secrecy label consisting of the secrecy
tag corresponding to the domain it was entered into. Data entered by the user into a form generated
by https://icrc.org would have dynamic label 𝑆dynv = {icrcsec}. Data labeled with {icrcsec} can be
sent to https://icrc.org but not https://evil.com (or any other domain).
Providing this IFC policy is complicated by the fact that when user input is delivered to the

Servo process (in the form of raw keyboard input), it is not associated with a particular domain.
The input data can however be labeled with the user’s secrecy label. Since there is only a single
user per Servo application invocation, the user’s secrecy can be represented with a static secrecy
label, 𝑆 stv = {usersec}, where usersec is a static secrecy tag for the user. Ideally, we could define
labels so that 𝑆 stv would be more secret than dsec for every domain 𝑑 . However, Carapace does
not support this relationship, because Carapace’s set-based IFC model does not allow mixing of
static and dynamic tags. Instead, we modified Servo so that when the code processes the input data
and determines that the input is being entered into a form generated by https://icrc.org, the code
declassifies and reclassifies the input data by changing its label from {usersec} to {icrcsec}.

10.1 Modifications to Servo to Implement the IFC Policy
The IFC policy ensures that all values affected by user keyboard input are secret, and can only be
leaked at explicit declassification points. To support this policy, we modified Servo to use Carapace
to label keyboard input data as secret. This involved wrapping secret values in SecureValue instances
and enclosing computations on secret values in secure blocks. We modified three main components
of Servo: (1) processing of keyboard events; (2) handling of text input; and (3) marshaling of text
input, in preparation for sending to a web server. These components are represented in Fig. 9, which
shows the flow of secret values through Servo. In the Processing of keyboard events component,
secret values are labeled with the user’s static secrecy label; our modifications use Carapace’s
static secrecy label StatSecLabel::A (Fig. 2a) to represent the user’s static secrecy label, {usersec}. In
the Handling of text input and Marshaling of text input components, secret values are labeled with
the dynamic label corresponding to the domain that generated the web form, e.g., {icrcsec}.

To limit the scope of changes, we decided to trust Servo’s networking component, which sends
raw data to a web server, effectively making it part of the trusted computing base (TCB) as Fig. 9
shows. To further limit our changes, we decided to trust Servo’s page-rendering components, which
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Fig. 9. An illustration of the flow of secret input data through Servo to a web server. The diagram excludes

non-secret data and components through which no secret data flows.

display web pages including form data entered by the user (not shown in the figure). There were
also several other places in the code—certain overloaded operator uses, if let expressions, and
trusted third-party library calls—where we chose to bypass the secure blocks’ side-effect-free checks
using a special trusted operation provided by Carapace.
We also decided that supporting the propagation of secure data through Servo’s JavaScript

engine would be outside our scope. Otherwise, both the the JavaScript engine and the JavaScript
API (Servo’s implementation of calls from JavaScript programs into Servo) would have required
pervasive changes. Specifically, a JavaScript program querying the content in an HTMLInputElement

or HTMLTextAreaElement, or identifying the key inside a KeyboardEvent, would need to propagate secret
values into the JavaScript engine, which cannot be supported by Carapace because the JavaScript
engine used by Servo is written in C++. Instead of treating the JavaScript engine as a trusted
component, which is arguably dangerous because it could leak secret data to arbitrary JavaScript
code supplied by an untrusted server, we disabled use of the aforementioned JavaScript API.
Aside from the networking component, rendering components, and JavaScript engine, we did

not trust or disable any other Servo component.

Processing of user keyboard events. Conceptually, when keyboard input is delivered to Servo from
the OS, the data should be labeled with the user’s secrecy label. Since our prototype does not label
data coming from system calls, we modified Servo to wrap keyboard input data in SecureValues.
These modifications were complicated by the fact that keyboard data is initially created by

a library called keyboard_types that is external to Servo. It provides keyboard data in the form
of a KeyboardEvent, which in turn contains instances of other types—Code, Key, KeyState, Location,
and Modifiers—all of which are defined in the keyboard_types library. Carapace requires that cus-
tom types be annotated as InvisibleSideEffectFree using the #[derive(InvisibleSideEffectFree)] an-
notation (§ 5.4), but Rust disallows annotating types defined in an external library. To address
this issue, we added a “wrapper” type to Servo for each type whose instances are contained in
KeyboardEvent: CodeWrapper, KeyWrapper, etc. We used unsafe code to implement InvisibleSideEffectFree
for each wrapper type.7 These changes allowed us to create a new keyboard event type con-
taining secure values including SecureValue<CodeWrapper, StatSecLabel::A, StatIntLabel::All> and
SecureValue<KeyWrapper, StatSecLabel::A, StatIntLabel::All>.

Handling of text input. In the middle of the flow from keyboard input to web server output is Servo’s
handling of text input (Fig. 9). Servo provides numerous functions to allow storing, processing, and
querying text input. We modified these functions to use secure values and secure blocks.
In this part of Servo, a ubiquitous Servo-defined type is DOMString, which represents text input.

The code often uses deref coercion (automatic invocation of a custom dereference operation by the
7We could not use #[derive(InvisibleSideEffectFree)] on the wrapper types, since that would still require the
externally defined types to implement InvisibleSideEffectFree.
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compiler) to access DOMString’s internal string data. However, deref coercion is syntactically invisible
to Carapace’s procedural macros and is thus disallowed by Carapace—specifically, it is not possible
to implement InvisibleSideEffectFree for DOMString (§5.4). We thus eliminated DOMString’s custom
dereference operation and changed accesses to be explicit.

Marshaling of text input and transmission to a web server. To submit form data to a web server,
Servo marshals values of each form element into a container type appropriate for the submission
method.8 These values include both secure and ordinary values because the IFC policy is only
enforced for text fields. To allow the container to hold both types of values without requiring all
of its values to be wrapped in SecureValue, we added a MaybeSecure enum to Carapace-retrofitted
Servo. Each MaybeSecure instance represents either an ordinary (unwrapped) or SecureValue-wrapped
value, allowing the container to hold a heterogeneous mix of value types at run time.

Servo then sends the marshaled data to Servo’s networking component, which transmits the data
to the appropriate web server. Since we elected to trust the networking component, our modified
code declassifies the text input data using the server’s secrecy label before sending the data to the
networking component. The result is fully declassified (i.e., empty secrecy label) and able to be
sent to the networking component only if the data’s secrecy label (e.g., {icrcsec}) is a subset of the
server’s secrecy label (e.g., {icrcsec} or {evilsec}). Otherwise, the trusted secure block panics.

10.2 Evaluation
To implement the IFC policy as described above, we added 3,029 lines and removed 636 lines from
Servo’s code base. These changes are spread across 37 modified and added files. These changes
include converting code to use SecureValue-wrapped types and secure blocks. In total we added 101
untrusted secure blocks across Servo.

Trusted secure blocks are a measure of how much code must be audited and trusted. In total our
modifications include adding 75 trusted secure blocks to Servo, totaling 196 lines of code. Of these,
41 trusted secure blocks are to send data to the trusted networking and page-rendering components.
Another 29 trusted secure blocks declassify the length of the input data, and the remaining 5 blocks
declassify boolean values derived from keyboard data, such as whether a key press is the Alt key.

Effectiveness. To test whether retrofitted Servo enforces the target security policy, we conducted
two experiments. Each experiment uses two tests: a “good” test that does not violate the target
security policy, and a “bad” test that violates the target security policy.

For the first experiment, we crafted proof-of-concept good and bad tests. In both tests, the user
(of Servo) inputs data into a simple form on a static HTML document served from a local HTTP
server. When the user submits, the good test’s page sends the user data to the local server, while
the bad test’s page sends the data to a remote server. In unmodified Servo, both tests executed
successfully, submitting data to either the local or remote server and displaying a response from it.
In the Carapace version of Servo, the good test also executed successfully. However, in the bad
test, Carapace’s run-time checking detected an illegal declassification prior to sending data to the
network, leading to a panic.9 Thus Carapace correctly prevented the violation of the policy.
In the second experiment, the good and bad tests access TheOldNet (https://theoldnet.com), a

JavaScript-free website that uses the Internet Archive to browse old web pages. For the good test,
when TheOldNet loaded, we clicked on the first text entry box, which allows one to input a website
URL to go to. We deleted the text currently in that text entry box and entered weather.gov without
8vec[u8] for GET requests, or a generic iterator over key–value pairs for POST requests.
9In our experiments, Servo panicked and terminated non-silently, despite Carapace calling std::panic::always_abort()
(§5.3). We suspect Servo may be circumventing Rust’s panic handling, e.g., by registering a trap handler with a system call
(which would require unsafe code).
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Table 4. Tests from Servo’s Web Platform Tests that execute at least 5,000 unwrap operations.

Statistics Run times
Secure Label (± 95% confidence intervals)

Benchmark blocks (trusted) comps. Unwraps Original W/Carapace
exec-command-with-text-editor.tentative.html 5,680 (2,104) 22,280 5,464 2,140 ± 15 ms 2,138 ± 14 ms
form-validation-validity-patternMismatch.html 5,561 (2,421) 21,546 5,561 2,780 ± 81 ms 2,735 ± 74 ms
form-validation-validity-tooLong.html 5,931 (2,573) 22,930 5,757 1,769 ± 10 ms 1,770 ± 10 ms
form-validation-validity-tooShort.html 5,947 (2,581) 23,010 5,781 1,780 ± 11 ms 1,781 ± 10 ms
input-untrusted-key-event.html 12,799 (1,101) 39,286 6,990 2,115 ± 29 ms 2,106 ± 27 ms
baseline-alignment-and-overflow.tentative.html 9,697 (4,654) 38,252 9,607 3,189 ± 68 ms 3,128 ± 26 ms
focus-dynamic-type-change-on-blur.html 11,384 (5,631) 45,374 11,463 2,246 ± 7 ms 2,248 ± 7 ms
type-change-state.html 12,731 (5,326) 48,260 12,901 1,933 ± 12 ms 1,900 ± 10 ms

changing the year we wanted to view the website from, which was 1996, before clicking the Go
button to the right. Then, we scrolled to the bottom of weather.gov, and clicked the link titled The

National Weather Service Home Page. In the page that opened, we clicked the SEARCH button,
and in the text entry box that appeared on the loaded page, we entered the text “tornado” before
pressing Enter. This test functioned without error in both unmodified and modified Servo.

For the bad test, when TheOldNet loaded, we deleted the text in the text entry box for Frog Find
searching. We entered “weather” and clicked the Search Frog Find button. In unmodified Servo,
this loaded a search page of various websites. In the Carapace version of Servo, this immediately
generated a panic. Disallowing this behavior is correct because it violates the security policy: Data
entered into a form flows from one domain (https://theoldnet.com) to another (http://frogfind.com).

Performance and run-time metrics. To measure the performance impact of Carapace on Servo, we
compared the performance of unmodified Servo with the Carapace version of Servo using Servo’s
existing test suite, specifically its Web Platform Tests. Servo has about 30,000 such tests.10
We ran all of these tests with Carapace-modified Servo and found that only a few of them

exercised Carapace’s functionality substantially. In particular, the vastmajority of the tests executed
fewer than 20 unwrap operations. (We use unwrap operations as a proxy for Carapace functionality,
since applications can only access secure values using unwrap operations.) However, eight of the
tests stood out by executing more than 5,000 unwrap operations each. We ran each of these eight
tests 1,000 times using both unmodified and Carapace-modified Servo to measure performance,
and used separate runs to collect statistics. The runs used the same experimental methodology as
the microbenchmarks evaluation (§7). Table 4 shows the results. The middle columns show how
many unwrap operations, secure blocks, and label comparisons were executed.

The last two columns report run-time performance. For all tests except type-change-state.html,
there is no significant run-time overhead added by Carapace (i.e., the confidence intervals are
small and overlapping). This result is unsurprising considering the rate at which Servo performs
Carapace operations: The tests last multiple seconds and perform only thousands of Carapace
operations. We expect that many real applications would similarly perform Carapace operations
sparsely. For type-change-state.html, Carapace-modified Servo has lower run time than unmodified
Servo. This (repeatable) result may be an artifact of compiler or microarchitecture optimizations.

Three of these tests had subtests that only modified Servo failed. These failures occurred because
Carapace does not allow secret values to be printed as strings, leading to unexpected output. The
failures always occurred at the end of each subtest and thus did not affect behavior otherwise.

10About 4,000 additional tests are consistently skipped by Servo’s testing infrastructure, so our results do not include them.
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Evaluation of full test suite. We also ran all ~30,000 WPT tests and found our changes have limited
impact on functionality, as reported in auxiliary material uploaded to the ACM Digital Library [10].

11 Related Work
This section discusses prior work not covered elsewhere in the paper (mainly in §2.3 and §5.3).

Following Cocoon [35], Carapace handles calls to Rust Standard Libraries by only allowing calls
to functions identified as side effect free (§5.4). Hedin et al. consider the problem of how to model
the effects of library calls, which can be modeled in a “shallow” way as in Carapace, or in a “deep”
way by applying IFC analysis to the functions’ implementations [28].

Prior work shows how to enforce fine-grained IFC for diverse targets. SecWasm provides IFC for
WebAssembly [9] . BMJVM proposes IFC for a bare-metal JVM running directly on a hypervisor [40].

In contrast to fine-grained IFC, coarse-grained IFC tracks information flow at the granularity
of processes, pipes, and other OS entities. Heule et al. show how to achieve coarse-grained IFC at
the language level and demonstrate how to prove noninterference without relying on language
features [29]. Vassena et al. show a general transformation between fine- and coarse-grained
IFC [60]. Laminar melds fine-grained, language-level IFC and coarse-grained, OS-level IFC [47, 49].

IFC for JavaScript. A key issue with enforcing IFC for programs in dynamic languages like JavaScript
is handling implicit flows. It is hard for analysis to determine which writes to public variables are
dependent on secret values. Prior work shows that dynamic IFC can handle implicit flows soundly
by terminating the program when a publicly visible effect may depend on a secret value [54].
Flow- and value-sensitive static analysis can enable more expressive IFC policies (i.e., less likely
to terminate) [12, 51]. An iterative testing-based approach can identify places where the program
terminates and prevent the same termination from occurring in future runs [13]. (Modeling common
JavaScript operations such as those in the Document Object Model (DOM) interface can help with
modeling explicit and implicit flows accurately [52].)
To detect implicit flows, secure multi-execution executes two versions of the program—one

affected by secret values and one unaffected by secret values—and compares them [24]. Austin and
Flanagan show how to support efficient secure multi-execution by optimizing for the common case
when values do not differ between secret and public executions [5, 6]. Jaskelioff et al. show how to
use secure multi-execution in a functional language, Haskell [30].
Prior work on IFC for dynamic languages has considered various enforcement mechanisms.

Most work enforces IFC in the client-side JavaScript interpreter. Alternatively, enforcement can
be performed in a just-in-time-compiled JavaScript VM to improve performance [31], or using
server-side source-to-source translation on JavaScript programs to increase flexibility [8, 39].

As §5.3 described, Carapace addresses the challenges of identifying and tracking implicit flows
by requiring accesses to secure data to be placed in uniformly labeled, lexically scoped blocks.

12 Conclusion
Carapace provides fine-grained, hybrid static–dynamic IFC for off-the-shelf Rust and its compiler.
Carapace can provide comprehensive IFC policies in complex applications, as evidenced by
retrofitting three real applications. This work advances the state of the art in software security by
demonstrating that off-the-shelf support for comprehensive IFC policies is feasible.

Data-Availability Statement
An artifact containing Carapace, the microbenchmarks, the three retrofitted applications, and
scripts to reproduce our evaluation is publicly available [11].
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